
How to use MiniIDE with uBUG12

Download MiniIDE from http://www.mgtek.com/miniide/

Click on the Download area to select your Operating System (OS) and download
MiniIDE.

This document assumes that MiniIDE has been installed in your computer.

Getting Started:

To create a new document click Menu – File - New

A new untitled file is created.

In this example the LEDs connected to PT0 and PT1 are toggled. The file is
Save As test.asm.

MiniIDE has changed the untitled file to test.asm.

This document will use the NC12DX with Docking Module from Technological
Arts. http://www.technologicalarts.com/myfiles/nc12.html

In this example, various Register definitions of 9S12C32 are in the include file
called C32Regs.INC. Generally, these types of files are to be found at
www.Freescale.com website. If the file does not exist then make one by looking
at the Datasheets of the MCUs.

Also, this document assumes that one is familiar with what are PORTs and
Registers. This document will only show how to use MiniIDE all the way to using
uBUG12 in erasing and programming the NC12DX Flash.

Parameters:

For compatibility with other 9S12 MCU the RAM gets move from default location
to $3800 to $3FFF.

* Operational Parameters
RAM: equ $3800 ;Ram got move from default to $3800 - $3FFF
STACK: equ $3F80 ;At end of RAM
FLASH: equ $4000 ;Fixed FLASH or PPAGE = $3E
VectorTable: equ $FF80 ;Beginning of Vector Table interrupt

OscFreq: equ 8000 ;Enter Osc speed
initSYNR: equ $02 ; mult by synr + 1 = 3 (24MHz)
initREFDV: equ $00 ;
PLLSEL: equ %10000000 ;PLL select bit
LOCK: equ %00001000 ;lock status bit
PLLON: equ %01000000 ;phase lock loop on bit

Please note the use of equ. It simply means a string is equal to a value to
connect both the meaning of the string and the value assigned to it. For
example,

STACK: equ $3F80 ;At end of RAM

Means that STACK = $3F80

To define RAM variables by the use of ds as define segment of a variable. For
example below, please note the start of RAM is defined to begin at $3800

 Org RAM

dum ds.b 1 ; 1 byte of dummy RAM variable
temp ds.b 1 ; another byte of dummy RAM variable

Meaning dum = $3800 and temp = $3801.

Below assigns the start of code. For example,

 Org FLASH ;Start of CODE

ResetFunc: ;This is where the RESET vector points to
 sei ;Disable Any interrupts

The is assigned to start at $4000 as defined by

FLASH: equ $4000 ;Fixed FLASH or PPAGE = $3E

In this example the PLL is enabled. One maynot want the PLL enabled so it is a
matter of not including the codes below.

Enabling PLL:

; Initialize clock generator and PLL
 bclr CLKSEL,PLLSEL ;disengage PLL to system
 bset PLLCTL,PLLON ;turn on PLL

 movb #initSYNR,SYNR ;set PLL multiplier
 movb #initREFDV,REFDV ;set PLL divider

 nop
 nop
 nop

 nop
 nop
 nop
 nop

 brclr CRGFLG,LOCK,*+0 ;while (!(crg.crgflg.bit.lock==1))
 bset CLKSEL,PLLSEL ;engage PLL to system

Type the rest of the codes below and once that is done the code can be
assembled or build.

;This is a test to blink a couple of LEDs connected at
; PT0 and PT1

#include C32Regs.INC

* Operational Parameters
RAM: equ $3800 ;Ram got move from default to $3800 - $3FFF
STACK: equ $3F80 ;At end of RAM
FLASH: equ $4000 ;Fixed FLASH or PPAGE = $3E
VectorTable: equ $FF80 ;Beginning of Vector Table interrupt

OscFreq: equ 8000 ;Enter Osc speed
initSYNR: equ $02 ; mult by synr + 1 = 3 (24MHz)
initREFDV: equ $00 ;
PLLSEL: equ %10000000 ;PLL select bit
LOCK: equ %00001000 ;lock status bit
PLLON: equ %01000000 ;phase lock loop on bit

LED1 equ 1 ;Port T bit 0
LED2 equ 2 ;Port T bit 1

 Org RAM

dum ds.b 1 ; 1 byte of dummy RAM variable

 Org FLASH ;Start of CODE

ResetFunc: ;This is where the RESET vector points to
 sei ;Disable Any interrupts

 movb #$00,INITRG ;set registers at $0000
 movb #$39,INITRM ;move and set ram to end at $3fff

;Initialize Stack
 lds #STACK ;initialize stack pointer

; Initialize clock generator and PLL
 bclr CLKSEL,PLLSEL ;disengage PLL to system
 bset PLLCTL,PLLON ;turn on PLL

 movb #initSYNR,SYNR ;set PLL multiplier
 movb #initREFDV,REFDV ;set PLL divider

 nop
 nop

 nop

 nop
 nop
 nop
 nop

 brclr CRGFLG,LOCK,*+0 ;while (!(crg.crgflg.bit.lock==1))
 bset CLKSEL,PLLSEL ;engage PLL to system

 bset DDRT,PT0|PT1 ;Make PT0 and 1 as output

main:
 com PORTT
 bsr delay
 bsr delay
 bsr delay
 bsr delay

 bra main

delay:
 ldy #0000

dlyloop:
 dbne y,dlyloop
 rts

;---
 ORG VectorTable ;Definition of Vector tables

 dc.w ResetFunc ;Reserve
 dc.w ResetFunc ;Reserve
 dc.w ResetFunc ;Reserve
 dc.w ResetFunc ;Reserve

 dc.w ResetFunc ;PWM Emergency Shutdown
 dc.w ResetFunc ;VREG LVI
 dc.w ResetFunc ;Port P
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved

 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;CAN transmit
 dc.w ResetFunc ;CAN receive
 dc.w ResetFunc ;CAN errors
 dc.w ResetFunc ;CAN wake-up
 dc.w ResetFunc ;FLASH

 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserve
 dc.w ResetFunc ;Reserve

 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved

 dc.w ResetFunc ;CRG Self Clock Mode
 dc.w ResetFunc ;CRG PLL lock
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;Reserved

 dc.w ResetFunc ;Port J (PIEP)
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;ATD (ATDCTL2 - ASCIE)
 dc.w ResetFunc ;Reserved
 dc.w ResetFunc ;SCI
 dc.w ResetFunc ;SPI
 dc.w ResetFunc ;Pulse Accumulator 0 input edge
 dc.w ResetFunc ;Pulse Accumulator 0 overflow
 dc.w ResetFunc ;Standard Timer 0 Overflow
 dc.w ResetFunc ;Timer 0 Channel 7
 dc.w ResetFunc ;Timer 0 Channel 6
 dc.w ResetFunc ;Timer 0 Channel 5
 dc.w ResetFunc ;Timer 0 Channel 4

 dc.w ResetFunc ;Timer 0 Channel 3
 dc.w ResetFunc ;Timer 0 Channel 2
 dc.w ResetFunc ;Timer 0 Channel 1
 dc.w ResetFunc ;Timer 0 Channel 0

 dc.w ResetFunc ;Real Time Interrupt
 dc.w ResetFunc ;IRQ
 dc.w ResetFunc ;XIRQ
 dc.w ResetFunc ;SWI
 dc.w ResetFunc ;Instruction Trap
 dc.w ResetFunc ;COP failure
 dc.w ResetFunc ;Clock Monitor
 dc.w ResetFunc ;Power On Reset

Assemble or Build a file:

The first thing to do is check the options to make sure it is set for HC12
assembler. Click on Terminal Menu – Options and then Tools tab.

Make sure to select and use the asm12.exe as the assembler for HC12 and
9S12 MCUs.

As one can note, the asm11.exe are for HC11 MCUs.

To build the file, select Build menu – Build test.asm as shown.

After the build – Please note the error(s).

The error is at line 57 showing the string pt0 is an undefined symbol. Go to line
57 and replace both PT0 and PT1 as LED1 and LED2. Save the revised file and
re-build. Note now the build is error free.

Using uBUG12 to ERASE and program FLASH:

uBUG12 is a GUI to interface with Freescale’s Serial Monitor that are pre-
programmed into the NC12s and Adapt9S12E128 families. It has some
similarities with Gordon Doughman’s DBUG12.

uBUG12 can be downloaded from Technological Arts website
http://support.technologicalarts.ca/files/uBug12.zip

For PCs with Windows98SE the .net framework must be installed in order for
uBUG12 to run. WinXP, 2K the .net framework is (usually) already installed.
The .net framework can be found at MS website

http://www.microsoft.com/downloads/details.aspx?FamilyID=d7158dee-a83f-
4e21-b05a-009d06457787&displaylang=en

Getting Started:

Double click on the uBUG12 icon to start GUI. Below is what uBUG12 started.

Here uBUG12 is waiting for commands. By typing help one can see different
commands that can be used.

Type the help command

Once the help command is invoked, uBUG12 will list the different commands as
shown.

Connecting:

This document will use COM 1 of the PC to connect to the target as an example.
For PC without serial port, a USB to COM can be purchase from any computer
store.

Connect a Serial cable from COM 1 to the Docking Module. Slide the Run/Load
switch to Load or Boot then power up the board. Make sure the power LED is
on.

The command to connect is CON 1 for COM 1 and CON 2 for COM 2.

2 possible errors can occur:
Connection Error: Unable to open COM1 <- Another application is using the
COM port

Connection Error: Read Error: Timeout error <- The MCU not currently in
LOAD mode or the cable is disconnected from either PC or Docking Module,
lastly the serial cable is connected on the wrong COM port.

A CONNECTED message will appear to show good connection between PC and
the target.

The device command will show the target type is as MC9S12C32 Rev 1.0.

Disconnecting:

To disconnect uBUG12 from the serial port, the command discon. This would
allow other application to use the COM 1 like MiniIDE, HyperTerm or Tera Term.

Flash erase and programming:

To erase the Flash memory the command is FBULK.

Successful erase

To program FLASH the command is Fload ;b for banked S19, SX, S2 records.
For non banked S2 or formatted S19 (went thru SrecCVT) record the command
is Fload.

Once the Fload ;b command is invoked, uBUG12 will open an explorer window to
help and locate the S-record. In this example, test.s19 will be the target S-
record file.

Double click on the file to initiate upload.

The test.s19 is programmed ok as shown.

Note that the Serial Monitor resides at $F800 - $FFFF. Therefore uBUG12 will
automatically re-locate the vector addresses at below $F800.

Briefly look at the Pseudo Vector address to check where the start of the
program. The command is md f7ff to show a memory dump of the Pseudo
Vector address at power up or reset.

The power up reset value at $F7FE is $4000. Therefore the program will start at
$4000

Memory dump at $4000

One can see that there are Data at $4000. To execute the program using
uBUG12, several registers needs to be initialized. Firstly, look at the registers
by the RD command then invoke the RESET command to initialize the registers if
necessary.

Memory dumps of the registers before RESET command is invoked.

After RESET command please note the changes with various registers. In this
example only PPAGE (PP) is changed.

To execute program the command is simply type go (after RESET is invoked) or
go 4000.

There are 2 methods to run the code. First using uBUG12 go command, the
second is by sliding the Run/Load or boot switch to Run then press the RESET
button on the docking module.

The test.asm will blink the LEDs rapidly.

This concludes using MiniIDE from writing to assembling to erasing and
programming the FLASH.

