
1

1 INTRODUCTION

Welcome!
 You’ll find Adapt812DXLT is an invaluable tool for har-
nessing the power and flexibility of Motorola’s 68HC812A4 mi-
crocontroller in your applications! Your questions and comments
are always welcome. We provide friendly, knowledgeable tech-
nical support by telephone, fax, and e-mail to all our customers. As
well, we have a comprehensive website with a resource page fea-
turing new information, software, and links to other useful sites on
the Internet. See back cover for how to contact Technological Arts.

Purpose of Adapt812DXLT
 Adapt812DXLT was designed as a low-cost evaluation
and application tool for the Motorola MC68HC812A4 microcon-
troller. It is a fully functional, standalone implementation designed
to run in Expanded Narrow Mode. Unique among evaluation
boards, its modular design permits it to be easily plugged into any
standard solderless breadboard, using the supplied adapter. De-
veloping your application is easy! Simply wire up the desired
application circuits in your breadboard and download your code
into memory, using the convenient on-chip erase/load utility. The
fast in-circuit re-programming capability is ideally suited for the
frequent code changes typical during application development.
Once the initial design has been developed, the application cir-
cuitry can be transferred to one of the prototyping cards offered by
Technological Arts for a more permanent assembly, suitable for
mounting in an enclosure. If many duplicate units are required, a
printed circuit board can be designed by the user to accomodate the
application circuitry, if desired.

Product Configurations
 Adapt812DXLT includes 128K Flash for code and 32K
SRAM for data. In addition, the ‘812A4 has 1K SRAM and 4K

REV 0

24

2

EEPROM. A firmware utility has been loaded into the on-chip
EEPROM by Technological Arts, making it easy for you to pro-
gram and erase Flash via your PC serial port, for quick and easy
programming. This makes separate programming hardware un-
necessary. However, the Flash chip is socketed, so that it may be
programmed out-of-circuit using a Flash programmer.
Communications
 Two RS-232-compatible serial interfaces (RX & TX only)
are included on the board, allowing communication with PCs, or
any other devices which have an RS-232 serial port (eg. serial
LCD, GPS unit, or printer). The logic-level RXD and TXD signals
from the MCU are also brought out to the 50-pin header, for ap-
plications such as RS-485 or MIDI.

How does Adapt812DXLT differ from evaluation boards ?
 Most evaluation and development systems available tend
to be too expensive and bulky for embedding into a real applica-
tion. Also, the prototyping area provided is often limited, and does
not lend itself to re-usability. By contrast, we took a modular
approach. With the Adapt12 system, all I/O lines and control
signals are brought out to two standard 50-pin interface connectors.
With several different connector options available, you can use the
module in whatever way best suits your needs. With the solderless
breadboard adapter, you can treat the module like a big chip, and
plug it right into a couple of breadboard strips. Forget about sol-
dering or wire-wrapping-- get started developing your application
right away. Your prototyping space is virtually unlimited, using
solderless breadboards! When you’ve got a design working and
your ready to make it permanent, just use the supplied prototyping
card build your fully customized, compact application at low cost.
Additional prototyping and application-specific cards are avaial-
ble, and more are under development.

23

 NOTES:

3

2 USING ADAPT812DXLT WITH SOLDERLESS
BREADBOARDS

The standard Adapt812DXLT Starter Package comes with a 50-pin
adapter to allow you to plug the module into a solderless bread-
board (“protoboard”). Typically, this adapter would be used on the
H1 I/O connector to plug the module vetically into your bread-
board. If additional signals from the secondary I/O connector (H2)
are needed, connection can be made via a ribbon cable. However,
use care not to short any pins on H2, since many of the signals
present are data and address lines used by the expanded memory on
board.
CAUTION!
Never insert or remove your module from a “live” breadboard.
Make sure the power is OFF !

1) Any breadboard will do; however, you will find that the
kind made with a softer, more pliable plastic (such as nylon) will
be easier to use and more durable.

2) When plugging the module into your breadboard, you may
find it easier to plug the adapter in place first. Then plug the
module into the adapter after you have finished wiring your I/O
circuits. To remove the module, hold the adapter down by the
ends, and gently pry up the module, using an end-to-end rocking
motion.

3) Plug Adapt812DXLT into the middle area of your bread-
board strip to allow maximum access on each end to all the signals.
If possible, place an additional breadboard section in parallel on
each side for easier wiring of your circuits. (HELPFUL HINT: If
you are using the Analog inputs, make sure to wire your analog
circuits as close to these pins as possible, to keep noise levels down.)

22

5.0 SOURCES

Internet Resources

•Technological Arts
www.interlog.com/~techart
e-mail address: techart@interlog.com
Join our Adapt12 email list to network with other Adapt12
users and receive automatic notification of updates, new
product announcements, and special promotions. Visit our
SUPPORT webpage for details.

•Motorola Freeware: www.mcu.motsps.com/freeweb/pub/

•Karl Lunt (SBASIC compiler): www.seanet.com/~karllunt

•Kevin Ross (BDM12 pod): www.nwlinkcom/~kevinro

•ImageCraft (ICC12 C compiler): www.imagecraft.com

•miniIDE (freeware HC12 development environment for W95/
NT platforms, by Marius Greuel):
 http://members.tripod.com/~miniide

Publications

Motorola Fax-on-Demand: (602) 244-6609 or 800-774-1848

Motorola Semiconductor Literature Distribution Center
P.O. Box 20912, Phoenix, AZ 85036 1-800-441-2447

• CPU12 Reference Manual (CPU12RM/AD)

4

4) Choose a convention for wiring your power distribution
buses. A logical approach is to make the inside bus logic 5V, and
the outside buses GROUND. If you supply external power via J1,
regulated 5VDC will be available via the breadboard connector
pins for your application. If instead you wish to provide regulated
5V to the board via H1, remove isolation link W11. In any case,
always connect the breadboard GROUND to the module
GROUND.

5) If you are using voltages other than 5V, make sure to keep
these well away from the I/O pins and tie-strips, to avoid accidental
shorts which may damage the module.

3 TUTORIAL

 Note that this manual is not meant to provide an exhaus-
tive study of the 68HC12 family of microcontrollers, but rather to
help you get started using the Adapt812DXLT microcontroller
board as a learning and application development tool for
68HC812A4, whether you’re a beginner or an expert. If you are a
beginner, you will benefit from additional material listed in the
Reference section of this manual, and links provided on both the
Resource page and the Applications page of our website (see back
cover for URL). You will find Motorola’s 68HC11 Reference
Manual an invaluable guide to the workings of the 68HC12, since
most of the subsystems of the 68HC12 work the same way as their
68HC11 counterparts. You should also make sure to get the
68HC812A4 databook and CPU12 Reference Manual from Mo-
torola Literature.
 If you have internet access, make sure to subscribe to our
techart-micros discussion forum (details on Tech Support web-
page). This free service allows you to network with other cus-
tomers using this product, and receive important notices regarding
new products, bug fixes, and software upgrades.

21

EEPROM-resident MXFlash utility moves out of the way, down to
$1000, and the reset vector will be fetched from the topmost block
of Flash.

5

CAUTION!
Never insert or remove your module from a “live” breadboard.
Make sure the power is OFF !

3.1 Getting Started

 Adapt812DXLT has a sample program already loaded into
Flash when you receive it. This is a useful program for testing your
communications setup and monitoring & controlling the various
I/O lines of the micro. It can also form the basis of your own
application code.
 You can power the module in one of two ways:

Figure 3.1 - Demo Menu shown in ICC12 Terminal Window

20

 To use MXFlash, set your terminal program’s baudrate to
9600, set Adapt812DXLT switches to RUN and SGL, and press
RESET. You’ll see the MXFlash utility menu displayed in your
terminal window. First type e to erase the Flash memory. Then
type p to program an s-record into Flash. Use the ASCII file
transfer function of your terminal program to send the s-record file
to the board. When finished, switch to EXP and press reset. The
program in Flash should now be running. Try the Flash loading
procedure using mx1demo1.s19, located on your HC12 Utilities
disk. Look at the source code of mx1demo.asm to see how the file
is set up to create a banked-Flash-loadable s-record. To download
a new s-record to Flash, simply switch SW3 back to SGL, press
reset, and make the appopriate selection from the Flash utility
menu. Note that you must perform an Erase before sending a new
file. You can use the v command to verify the contents of Flash
against an s-record file. Just use the ASCII download function
again to send the s-record file to be verified against. Failure to
program or verify usually indicates that your s-record file contains
references to invalid addresses. If it does match, you will get a
confirmation message, and the menu will be re-displayed.
 The Flash programming function will handle s-records
generated for either banked or non-banked memory schemes, as
well as recognizing and programming non-Flash addresses. An
s-record file destined to be used in non-banked mode will include
s-records above the Program window (ie. $c000 and higher).
These are the types of s-records generated by ICC12 and SBASIC.
Before loading such a file into Flash, select Non-banked Mode (n
from the menu). When in Non-banked Mode, the algorithm
automatically sets the PPAGE value to the second-last page of
Flash when programming target addresses in the range
$8000–$bfff. When it encounters addresses in the range $c000–
$ffff, it sets PPAGE to the last page of Flash, and subtracts $4000
from the address, to derive a destination address in the Program
Window. When the board is reset in Expanded Narrow mode, the

6

 1) supply power via the external power connector; just
connect a DC voltage of 8 Volts or more (recommended maximum
is 12V) to the external power connector J1. Red is positive, and
black is negative (ground). CAUTION! Make sure you have the
polarity correct!
 2) or, supply regulated 5VDC via the appropriate pins on
the 50-pin connector (H1). See Appendix A for the module pinout
diagram. CAUTION! Double-check your connections before
applying power! (Note: if you are powering the board via H1,
remove isolation jumper W11 to prevent conflict with the on-board
regulator.)
 To use the demo program, make sure switch SW2 is in the
RUN position, and the switch at JB1 is set to EXP. Connect the
supplied serial cable between Adapt812DXLT and a serial port on
your computer. (With some PCs, you will need a 9-pin to 25-pin
adapter.) Run any terminal program on your PC. Suggested DOS
programs are ProCommPlus, Kermit, or Mirror. On a Windows
machine, you can use Windows Terminal (W3.1), Hyperterminal
(W95/98) set to “connect direct to COMx”, ICC12 for Windows,
or miniIDE. In your terminal program, set the baud rate to 9600,
parity to NONE, # DATA BITS = 8, and #STOP BITS = 1. Press
the RESET button (SW1). LED D1 will blink four times, indi-
cating the demo programming is running. Press the ENTER key on
your keyboard. A menu of commands will appear in your terminal
window, followed by a command prompt “?” symbol. Each
command is activated by a single keystroke. Typing a command
not listed will cause the menu to be re-displayed. Figure 3.1 shows
an example of a demo program running in ImageCraft’s ICC12
IDE terminal window.
 In general, typing the letter name of an I/O port in the demo
program returns the state of that port. Try putting switches on
some of these input port lines. Connect one side of the switch to
the port pin and the other side to ground. Note that external pullup
resistors are not required, since most ports have internal pull-up

19

not affected by the program paging system, but are still accessible
when EEPROM is in the top 4K of the map. This leaves a 12K
block of Flash from $c000–$efff where all Interrupt Service Rou-
tines (ISRs) and startup code should be placed. Once the startup
code switches on paging, subroutines in the program page window
can be accessed using the CALL and RTC features of the HC12
instruction set. Listing 1 is an example of how a typical sourcecode
file would be organized.

4.42 The MXFlash Utility

 LISTING 1

org $c000
;up to 12K of code goes here (up to $efff)
; This would include:
;1) startup code (where reset vector points; turn on memory expansion and
paging)
;2) main code (and some subroutines, if space allows)
;3) interrupt service routines

;paged program memory
 org PPAGE
 fcb 0
 org $8000

;up to 16K of subroutines for page 0 go here (up to $bfff)
.....
 org PPAGE
 fcb 1
 org $8000

;up to 16K of subroutines for page 1 go here (up to $bfff)
.....
 org PPAGE
 fcb 2
 org $8000

;up to 16K of subroutines for page 2 go here (up to $bfff)
.....
etc.
 org PPAGE
 fcb 7 ;use $1f for a 512Kx8 Flash chip
 org $bfc0

;vector table starts here
;IMPORTANT:
;all vector entries must point to addresses between $c000 and $efff
;(ie. the startup code and all ISRs must be located in this 12K block)
 .
 .
;end

7

resistors which are enabled out of reset (refer to the 68HC812A4
Technical Summary for details). In the demo program, PT6 is used
as a tone output for a speaker. It is also connected to LED D1, to
provide a visual output. You can drive a small piezo speaker
directly by hooking one end to PT6 through a 330-Ohm resistor,
and the other end to ground. When you press RESET, or type “L”
when the demo program is running, you will hear two beeps from
the speaker (or the LED will flash twice).
 In the demo program, PORTJ is set up as all outputs.
Typing a digit between 0 and 7 causes the output state of the
corresponding PORTJ line to be toggled (eg. typing 3 causes PJ3 to
flip to a high if it was low previously, or a low if it was high
previously). This allows you to activate LEDs (when driving LEDs
directly from an output port, limit the current to a maximum of
10mA with 330-Ohm current limiting resistors on each LED); or
drive relays, solenoids, or motors (with appropriate driver cir-
cuits). Typing J forces all PORTJ output lines low. Typing R
causes the values of all 8 analog-to-digital converter (AN0-AN7)
channels of to be continuously updated on the screen (near Real-
time updates) The display will continue to be updated until a key is
pressed. Analog channels (AN0-AN7) can read voltages between
0 and 5 Volts. Try putting a 10K-Ohm (or higher) pot across the
VRL and VRH pins (pins 30 and 31), and connect the wiper to an
AN input through a 1K-Ohm current limiting resistor; then change
the pot setting, monitoring the AN values on the screen. Unused
AN channels should be grounded to VRL through a minimum
1K-Ohm resistor. These inputs are not internally protected from
electrostatic discharge (ESD) as the other input port lines are.
(HELPFUL HINT: Grounding multiple adjacent analog inputs is
easy by plugging a bussed resistor SIP in your breadboard and
jumpering the SIP common pin to VRL.)

3.2 Writing Your First Program

 If you are already experienced with the 68HC11 family of

18

map it into the linear physical address space of Flash. For in-circuit
programming of Flash, however, the scheme is somewhat simpler,
since no virtual addresses need be created. Since PPAGE is just a
memory location, it can be written to (as many times as necessary)
by means of an s1 record during the course of downloading. Of
course, the assembler will have to generate the s-records sequen-
tially during assembly. The necessary s1 record to alter the value
of PPAGE can be implemented by means of the ORG and FCB
directives of the assembler. Using this scheme, one can preface a
block of code or subroutines with a directive which sets PPAGE to
the desired page.
 The MXFlash Utility, residing in on-chip EEPROM, al-
lows user interaction with a terminal program to perform such
necessary operations as Erase Flash, Program an s-record file, and
Verify the contents of Flash. In order to execute the utility out of
reset, you reset the chip in single-chip mode, forcing the EEPROM
into the vector space. The utility then switches to expanded mode
by initializing the appropriate memory expansion and mode reg-
isters, and it is ready to load code into Flash. By careful placement
of ORG and FCB directives throughout the assembly source code
(to force the appropriate value into PPAGE before loading a new
page of code), the s-record loader will automatically change
PPAGE “on-the-fly”, during s-record downloading. This supports
programming of code into any combination of program pages in
Flash. In fact, since the topmost page also appears in the space
$c000–$ffff, it is possible to program the vectors via the page
window– which is indeed necessary, since the on-chip EEPROM
is active in the vector space from $f000–$ffff, preventing direct
access to Flash via these addresses. There are a couple of tricks to
implementing this scheme, however. In order to program the last
page of Flash with the vectors and startup code, you have to use the
PPAGE windowed system, in which the address range is $8000–
$bfff. Therefore you’ll set PPAGE=7 and ORG the vector table at
$bfc0. Also, you need all the vectors to point to locations that are

8

microcontrollers, writing 68HC12 programs will not present a
challenge. In fact, you can use your existing 68HC11 assembly
code and re-assemble it for the 68HC12. There are a couple of
things to keep in mind when doing this. The first is assembler
syntax. You may need to edit your source file to conform to the
syntax and directives requirements of the HC12 assembler you are
using. Keep in mind, too, that the register block default location is
$0000 and the 1K internal RAM is at $0800. This means you
would initialize the Stack Pointer to $0c00. Also, the HC12 bus
speed is a lot higher than the HC11. This will mean changing some
initialization values for control registers and revising delay con-
stants if you are doing software timing loops. Of course, there is an
expanded inteerupt vector table, handling the additional hardware
functions of the HC12. As with the HC11, you will have to define
at least the Reset vector in every program you write.
 To explore the new instructions and addressing modes of
the HC12, you should refer to the Motorola CPU12 Reference
Manual, available from the Motorola Literature Center or in Ac-
robat format from Motorola’s website.
 As mentioned in the previous section, a demo program
resides in your module’s Flash memory when you receive it. This
demo program is written in Freeware AS12 assembler syntax, and
is intended to provide you with an easy way to verify your hard-
ware setup (ie. power supply, serial connection, PC software, etc.).
It also provides you with an excellent starting point for developing
your own program. Rather than starting from scratch, you can
make a copy of the demo source file and remove and add features,
to transform it into what you need.
 Many people approach programming by spending hours or
even days writing a program from scratch, then assembling it and
downloading it. Then they cross their fingers and reset the board,
praying everything will work. About 99% of the time, their hopes
are dashed, as the board does something completely different than
they expected, or worse– it appears to do nothing! At that point,

17

gram were located in the first physical page of Flash, starting at
$8000, the last few lines of startup code would set PPAGE=0, and
jump to $8000.
 A second issue is how to deal with paging and the gen-
eration of s-records in the assembler. If the Flash is to be pro-
grammed externally and subsequently plugged into the board’s
socket, the assembler would need to incorporate the page value
into the destination address, creating the virtual address needed to

Figure 4.1

9

they either give up, or purchase expensive diagnostic equipment,
such as logic analyzers and in-circuit emulators to begin the long
hard road of diagnosing and correcting their software and/or
hardware mistakes.
 A much more sensible– and rewarding– approach is to
start with something that works, and then add new features in-
crementally. The modular design of Adapt812DXLT gives you
that starting point– hardware that works, and software that works.
Now, if you build on that incrementally, each diagnostic step is
small and manageable. And it will probably end up taking a lot less
time, and costing a lot less money.
 A useful debugging tool for program development is the
serial communications interface (SCI). The SCI gives you a win-
dow on what’s going on inside the microcontroller. Simple diag-
nostic messages, placed at strategic points in your evolving pro-
gram, will be invaluable in debugging your software and hardware.
 With the HC12, however, Motorola has added an even
more powerful feature for debugging and development– the Back-
ground Debug Mode (BDM). This feature allows you to examine
and modify locations and registers in your system while your
program is running or suspended. It is implemented with a
single-wire serial protocol, and requires a BDM interface pod to
use with a serial port on your computer. Motorola makes a full-
featured SDI pod, costing several hundred dollars, which is beyond
the budget of most hobbyists, students, and many engineers For-
tunately, there are some low-cost alternatives. Adapt912 from
Technological Arts, and Motorola’s 912EVB Evaluation Board
both have a debugger/monitor program (D-Bug12) on-chip, which
allow them to be run as a BDM interface, in POD mode. Another
possibility is the BDM12, from Kevin Ross, which includes
Windows95/NT-based software for easy debugging. All of these
pods may be used for downloading s-records to EEPROM, and all
are supported by ImageCraft’s ICC12 68HC12 C Cross-complier
for Windows. See Section 5 for contact information.

16

memory page window system, in Normal Expanded Narrow Mode.
Refer to your 68HC812A4 data book for details on the paging
architecture and memory expansion modes of the MCU. In this
configuration, RAM is viewed by the MCU as a bank of 4K data
pages, with the active page being selected by the MCU’s DPAGE
register. Flash memory is viewed by the MCU as a bank of 16K
program pages, with the active page being selected by the MCU’s
PPAGE register. The example shown in Figure 4.1 is taken from
Motorola’s 812A4 databook, and is for 64K RAM (data space) and
128K Flash (program space). A 32K RAM will consist of 8 data
pages of 4Keach. The 128K Flash will be divided into eight 16K
program pages, as shown. The Extra Page space shown in Figure
4.1, corresponds to CS0-CS3, and is not implemented in
Adapt812DXLT. However, the user can implement it, if desired,
by decoding the signals present on connector H2.

4.41 External Memory Programming Issues
 When the MCU comes out of reset in Normal Expanded
Narrow mode, CSP0* is active, but program paging and A16 are
not active. All address lines above A15 are pulled high, so the
MCU will fetch the reset vector from the last two physical address
locations in Flash. Since paging hasn’t been enabled, CSP0*
covers 32K of system memory (from $8000–$ffff), which is the
last 32K (contiguous) block of Flash. Startup code should be put
in the upper 16K half, so that when program paging is turned on,
the re-definition of addresses will not disrupt program execution.
(Program execution could be disrupted because, when program
paging is activated, the lower 16K half [of the topmost 32K block
of Flash] suddenly “jumps” to $8000–$bfff, accessible only when
PPAGE=6 for a 128K Flash) The startup code to be placed in the
topmost 16K page would typically be the memory expansion
register initializations. After that, the PPAGE register could be
initialized to the desired value, and a jump to the beginning of the
user program could be performed. For example, if the user pro-

10

3.3 Downloading Your Code to Adapt812DXLT

 Once you have assembled your code with no errors, you
can download the resulting s-record file (filename.s19) to Flash
using the on-chip firmware utility provided. Connect the supplied
serial cable between connector J4 on your module and an available
serial port of your PC (or Mac, Amiga, workstation, etc.). Use any
terminal program, set it for the chosen serial port and 9600 baud.
 Power up or reset your module with BOOT/RUN set to
RUN, and the JB1 switch set to SGL. You should see a command
menu in your terminal window. The size of Flash (128K) is dis-
played at the top of the menu in the status line, along with the word
“banked”. If your program does not use banked mode, select N.
(For more on banked versus non-banked memory, see section 3.4.)
To load your s-record file into Flash, first select E to erase the
Flash. LED D1 will come on while the Flash is being erased.
When it is finished, select P and use your terminal program’s
ASCII Transfer or Send Text File function to send your s-record
file. When it has finished, slide the JB1 switch to EXP and reset
your module. If you wrote your code correctly, it should now be
running. Always leave SW2 in the RUN position, otherwise the
firmware utility may get erased from the on-chip EEPROM. (If
you do erase it accidentally, however, it is easy to reload. See
Section 4.1 for details.)
3.4 Expanded Mode Operation

 Adapt812DXLT was created by merging two other Tech-
nological Arts products (Adapt812 Microcontroller card and a
pared-down version of the Adapt812MX1 Memory Expansion
card) into a single compact board. As a result, references to
memory expansion in documentation and filenames will some-
times be made to MX1. Adapt812DXLT is designed to run in
Expanded Narrow Mode (8-bit data bus). For this reason, MODB
is jumpered low, on JB1. The switch on JB1 allows MODA to be
switched between logic 0 (single-chip mode) and logic 1 (ex
panded mode). Typically, you will set the switch to SGL to run the

15

p to program Flash. Select the terminal window’s ASCII download
option, choose the .s19 file you wish to download and click OK.
When downloading has finished, switch SW3 to EXP, and press
RESET. By selecting non-banked mode, you have told MX1Flash
to automatically calculate the correct address and page offset to
place your code in the last two blocks of physical Flash memory.
When you reset in expanded mode, your code will be located in the
32K block of Flash the ‘HC812 accesses from 0x8000 to 0xffff.

4.3 Using SBASIC

As is the case with ICC12, SBASIC does not directly support
banked memory on the 68HC12, so you will only have 32K Flash
available for your code. The following are suggested compiler
options for use with Adapt812DXLT. If myprog.bas is your
SBASIC program filename, and myprog is the name you want the
target assembly language file to be called, then type:

sbasic myprog /c8000 /v0800 /s0c00 /m6812 >myprog

After successful compilation, run as12 to create an s-record file, as
follows:
 as12 myprog

Then open a terminal window set for 9600 baud (no character
delay). Reset the board in SGL mode, and the MXflash utility
menu will appear. Type n to set non-banked mode. Then type e to
erase Flash, and choose p to program Flash. Select the terminal’s
ASCII transfer function, and download your .s19 file. When fin-
ished, switch SW3 to EXP, and press RESET.

4.4 External Memory

As mentioned previously, external memory on Adapt812DXLT
was designed to be used with the 68HC812A4’s Data and Program

11

firmware Flash loader utility (mxflash), then erase the Flash and, fi
nally, load an s-record file into Flash. Then you will switch to
EXP, and reset the board to cause the microcontroller execute the
code that is now in Flash.
 There are a few points to keep in mind when writing code
for an expanded mode system. The 68HC812A4 provides several
internal registers which control and define the various possible
configurations of expanded memory. The simplest code can ignore
these registers, and consider the memory map to be limited to 64K.
This will be referred to as Non-Banked Mode. In this case, the 32K
external RAM will be accessible from $0000 - $7fff (when enabled
via CSCTL0 and CSTL1 registers), and only the upper 32K of the
external Flash will be available from $8000 - $ffff (since CSP0 is
enabled by default). The exceptions are those internal
68HC812A4 resources which appear in these areas– they have
priority over external memory. Note also that, in non-banked
mode, the physical address actually accessed in Flash is the top-
most 32K block, since the default logic level on address lines
above A15 is high. If you’re using a Flash Programmer to load
code (instead of doing it in-circuit), you will have to specify the
appropriate offset in the programmer’s console.
 To take full advantage of the memory capacity available on
Adapt812DXLT, however, some of the MCU’s registers must be
initialized at the beginning of your code. For recommended reg-
ister values, have a look at the demo program source code, found
in the adapt12/mx1 subdirectory of your Starter Package disk. The
relevant file is mx1demo.asm. While the demo program is small
and fits into a single page of Flash, a larger program could have
subroutines located in other banks of Flash. The only change
necessary would be to use the CALL instruction instead of JSR,
specify the page number where the subroutine is loacted, and
change the RTS to RTC (return from call) at the end of the sub
routine. For further details on using expanded modes, refer to the
68HC812A4 data book from Motorola.

14

Flash will be in the vector space, and the HC12 will attempt to run
whatever is there.
User EEPROM. You may wish to use some EEPROM for storing
calibration information or a serial number. You could erase EE-
PROM and use it for your application; however, you would lose
both the bootloader and MXFlash utilities, and have to re-load
them when you need to make a code change in Flash. If 254 bytes
is enough, use the EEPROM from $1e00 - $1efd. This block is not
used by the bootloader or mxflash utilities, and has been reserved
for the user’s applications.

4.2 Using ICC12 for Windows

 While the Pro version of ICC12 supports paged memory
on the 68HC12, the Standard version does not. This means that in
the simplest implementation, you will only have 32K Flash avail-
able for your code (ie. you will be running in Non-Banked Mode).
Before compiling, set up the linker sections with 0x0800 for data
(RAM), 0x8000 for text (code), and stack at 0x0c00. This will
allocate the on-chip 1K RAM for both variables and stack, and the
external RAM will not be used. (Note: to use external RAM, you
need to add initialization code to set the CSDE bit of the CSCTL0
register. Then you could locate the DATA section at 0x2000, for
example. If you try to allocate the stack to external RAM, how-
ever, watch out! ICC12 executes a JSR instruction to run your
startup code. Since the external RAM is not yet enabled, the RAM
to implement your stack has not yet been enabled, so your code will
never return from the startup routine.) After ‘compling to execu-
table’, download the resulting s-record file using the terminal
window. Open the terminal window and set communication op-
tions for 9600 baud and no character delay. Reset the board in SGL
mode, and the Flash Utility menu will appear. Mxflash auto-
matically recognizes the memory size of the Flash device on your
board, and displays it at the top of the menu. You should now type
n to set non-banked mode. Then type e to erase Flash, and choose

12

4 REFERENCE
4.1 How On-chip EEPROM Programming Works

 The module uses on-chip 4K EEPROM for two purposes.
A small (256-byte) bootloader has been installed in the uppermost
three protected blocks of 68HC812A4 EEPROM by Technological
Arts. It can be used to load any s-record file into the rest of
EEPROM, via the RS232 serial port, at 1200 baud. To use this
function, reset the board with SW2 at BOOT and the JB1 switch at
SGL. Now when you send an s-record file at 1200 baud, the
bootloader will erase all but the protected block of EEPROM, and
then program each byte of the s-record file into EEPROM. LED
D1 will flash once for each s-record loaded.
How it works: This bootloader program runs whenever the chip is
powered up or reset in single-chip mode. It first examines the state
of PC6 (set via SW2) to decide whether to run a user program in
EEPROM or to initiate downloading (BOOT) mode. If the pin is
pulled low, the program loads an s-record file at 1200 baud via the
serial port, and “burns” it into EEPROM. If the pin is open (pulled
high by the internal pullup resistor), control passes to the user
program. This event is transparent to the user. The only limitation
is that EEPROM Blocks 0 - 2 ($ff00 to $ffff) plus the pseudo-
vector location are not available to the user. During downloading,
the user reset vector is automatically intercepted and stored in a
pseudo-reset-vector location established by the bootloader ($fefe,
$feff). It is here that the bootloader looks when the chip is reset in
RUN mode, passing control to the user’s program based on this
vector. If the vector has not yet been initialized (ie. contains $ffff),
the bootloader stops in an infinite loop, flashing LED D1 to in-
dicate an error condition.
 It is virtually impossible to accidently erase the bootloader
from the EEPROM, unless your program implements code to erase
or program on-chip EEPROM, and it clears the Block Protect bit
for the upper three “boot blocks”. If for some reason you do erase

13

the bootloader, you will need to use a BDM pod to re-load it. However,
if you have only erased the Flash Utility (much more easily done), the
procedure for restoring it is quite simple.
4.11 Re-loading the Flash Utility
 On Adapt812DXLT, a “user” program has already been loaded
into EEPROM. It is the Flash utility mentioned previously (called
mxflash), which allows you to erase Flash and load s-records into it,
among other things. If you have inadvertently erased mxflash from
EEPROM, you can easily re-load it as follows. From DOS, use one of
the batchfiles included on the Starter Package disk. Use p8s1.bat for
COM1, or p8s2.bat when using COM2. (If you are using another
COM port, you will have to edit the batchfile to reflect this.) For
example, to download mx1flash.s19 to Adapt812DXLT EEPROM via
COM2, at the DOS prompt, you would enter:
 p8s2 <path>mx1flash
where <path> is the directory path to where mx1flash.s19 is located (if
it is not in the same directory as p8s2.bat). Then follow the on-screen
instructions. If you experience problems with the DOS batchfile on a
Windows95 machine, you may need to edit the batchfile to add “\dev\”
to each occurence of the com port path (eg. copy %1.s19 \dev\com2).
 Instead of using the DOS batchfile described above, you could
use our Windows-based MicroLoad (select Adapt812 as target) or any
terminal program to perform an ASCII transfer of mx1flash.s19 to the
board via the serial port. Just set up the terminal program for the
appropriate COM port and a baud rate of 1200. Switch to BOOT, press
RESET, and send the file. When you are done, change the terminal to
9600 baud, switch the board back to RUN mode, and press RESET
again. The Flash Utility menu will be displayed.
 Note that, when using the EEPROM bootloader, as described
in this section, you should always keep the chip in single-chip mode (ie.
switch SW3 set at SGL). If you reset or power-up with the SW3
at EXP, the 4K on-chip EEPROM will default to $1000 instead of
$f000 (refer to Motorola’s 68HC812A4 data book for details), and will
no longer be in the vector space of the HC12. Instead, your external

