
1

1 INTRODUCTION

1.1 Congratulations...

 You are now the proud owner of MicroCore-11! It’s one of the
smallest 68HC11 microcontroller modules around, and we’re sure you’ll
find it useful in your application! Your questions and comments are always
welcome. We provide friendly, knowledgeable technical support by
telephone, fax, and e-mail to all our customers. As well, we have a
comprehensive website with a Tech Support page, an Applications page,
and a Resources page featuring new information, software, and links to
other useful sites on the Internet. Visit the Tech Support page for
instructions on joining our techart-micros email forum for receiving news,
updates, and networking with other customers using ourproducts. See back
cover for how to contact Technological Arts.

1.2 What is MicroCore-11™?

 MicroCore-11 is an evaluation and application tool for Motorola’s
popular MC68HC11 microcontroller. It is unique among evaluation boards
in that it is designed to plug vertically into any standard solderless
breadboard. It is a fully functional, standalone implementation of an
expanded-mode 68HC11 configuration, and can be plugged, just like a chip,
into your breadboard. Then you simply wire up the desired application
circuits and download your appropriate code into the micro, to rapidly
evaluate and develop your application ideas.

1.3 Product Description

 MicroCore-11 comes with on-board EEPROM program memory
(8K or 32K, depending on version) and a built-in RS232 interface. These
two features mean that MicroCore-11’s memory is directly loadable via your
PC serial port for quick and easy programming. The 68HC11’s handy
Bootstrap mode makes separate programming hardware unnecessary.
MicroCore-11 modules will work with any A-series and E-series 68HC11
chips that are packaged in a 52-pin PLCC.

REV 2b

24

APPENDIX A
Pinouts for SB Connector Option

MicroCore-11

 PA7 1 26 PD2 (MISO)
 PA6 2 25 PD3 (MOSI)
 PA5 3 24 PD4 (SCK)
 PA4 4 23 PD5 (SS*)
 PA3 5 22 +5VDC
 PA2 6 21 IRQ*
 PA1 7 20 XIRQ*
 PA0 8 19 VRL
 VRH 9 18 GROUND
 PE0 10 17 PE4
 PE1 11 16 PE5
 PE2 12 15 PE6
 PE3 13 14 PE7

 TOP VIEW

 Note: * indicates ‘active low’

C
O

M
PO

N
E

N
T

 S
ID

E

SO
L

D
E

R
 S

ID
E

2

1.4 Description of Product Configurations

 MicroCore-11 Starter Packages include a 68HC11E0 MCU, with
512 bytes RAM on-chip. Operating in expanded-chip mode, two of the
68HC11 input/output ports form the address and data buses, and are thus
unavailable for user applications. External memory of 32K RAM (lower half
of memory map), and 32K EEPROM (upper half) is provided. In
configurations which have only 8K EEPROM, the 8K block appears
redundantly, at each 8K boundary in the upper half of the memory map.
 MicroCore-11 satisfies the needs of users who want lots of
memory, but only require a modest number of I/O lines. It is also suitable
for datalogging applications, where a large chunk of RAM is required for
storing samples or events. This configuration is also well-suited to
applications requiring large calibration tables, or a lot of text messages (an
alphanumeric LCD module, for example).
 A “Turbo” version of MicroCore-11 is also offered, which uses a
9.8304MHz crystal and a faster MCU (68HC11E0CFN3). Besides giving
a 21% speed increase, this crystal frequency was chosen because it
supports standard baudrates up to 38400 (vs. 9600 running at 8MHz).

1.5 Communications

 An RS-232-compatible 3-wire serial interface port (RX, TX, and
Ground) is built into MicroCore-11, allowing communication with a PC, or
any other device which has an RS-232 serial port. A jumper is provided
on the board (W4) to disconnect the RS232 interface chip’s power supply,
for applications not requiring RS232, and where power consumption is to
be kept to an absolute minimum.

1.6 MicroCore-11 Versus Other Evaluation Boards

 There are many evaluation and development systems available.
Most of them try to be universal in their application, containing every
imaginable kind of support circuitry on-board, or providing a large area for
prototyping by soldering or wire-wrapping parts on the board. The designer

23

 NOTES:

3

tried to second-guess what you might want to do, and as a result you pay
more and have less flexibility. We chose instead, to take a modular
approach. With MicroCore-11, all available I/O lines and control signals
are brought out to a standard 26-pin interface connector. With several
different connector options available, you can use the module in whatever
way best suits your needs. With the solderless breadboard header, you
can treat the module like a big chip, and plug it right into your breadboard.
Forget soldering or wire-wrapping– get started developing your application
right away. Your prototyping space is virtually unlimited, using solderless
breadboards! When you’ve got a design working and you’re ready to move
to something more permanent, a full range of accessories give you the ability
to easily build fully customized, compact applications at low cost, with a
full range of accesories including backplanes, prototyping cards,
motor-drivers, and other application-specific cards.

Using MicroCore-11 with Solderless Breadboards

 The standard connector option installed on the Starter Package
board is the “SB” style, designed to plug into a solderless breadboard. If
your board has a different connector option, you can still use it with a
solderless breadboard, by way of a 26-pin solderless breadboard adapter.
See the MicroCore-11 Accessories page on our website, or contact us,
for further information on these adapters. For contact information, refer
to the back cover of this manual.

CAUTION!
Never insert your module into or remove it from a “live” breadboard.
Make sure the power is OFF !

1) Any breadboard will do; however, you will find that the kind made
with a softer, more pliable plastic (such as nylon) will be easier to use and
more durable. Avoid excessive removal and insertion of your board, to
extend the life of your breadboard.

2) When plugging MicroCore-11 into your breadboard, keep it

22

- G. J. Lipovski - 1988, Prentice-Hall / ISBN 0-13-810557-X 025
- 68HC11-specific textbook with examples & problems
The M68HC11 Microcontroller: Applications in control, instrumentation and
Communication
- Michael Kheir - Prentice Hall

4

vertical and press gently but firmly, rocking the module back and forth
slightly, until the pins are seated in the sockets. Use the same side-to-side
gentle rocking motion, while pulling gently upward, to remove the board.

3) Plug MicroCore-11 into the middle area of your breadboard strip
to allow maximum access on each end to all the signals. If possible, place
an additional breadboard section in parallel on each side of MicroCore-11
for easier wiring of your circuits. (HELPFUL HINT: If you are using the
Analog inputs, make sure to wire your analog circuits as close to these
pins as possible, to keep noise levels down.)

4) Choose a convention for wiring your power distribution buses. A
logical approach is to make the inside bus logic 5V, and the outside buses
GROUND. Never supply external power via J1 if you are supplying 5VDC
via the breadboard connector pins. However, always connect the
breadboard GROUND to MicroCore-11 GROUND.

5) If you are using voltages other than 5V, make sure to keep these
well away from MicroCore-11 pins and tie-strips, to avoid accidental shorts
which may damage the module.

3 TUTORIAL

 Note that this manual is not meant to provide an exhaustive study
of the 68HC11 family, but rather to help you get started using MicroCore-11
microcontroller boards as a learning and application development tool for
68HC11, whether you’re a beginner or an expert. If you are a beginner,
you will benefit from additional material listed in the Reference section of
this manual, and links provided on the Resource page of our website (see
back cover for URL). Be sure to check the Beginner section on our Tech
Support page.

CAUTION!
Never insert MicroCore-11 into or remove MicroCore-11 from a “live”
breadboard. Make sure the power is OFF !

21

Manual (M68FCASS/AD1)

Other Books

The 68HC11 Microcontroller
- Joseph D. Greenfield (at R.I.T.) - ISBN 0-03-051588-2
- 1992, Saunders College Publishing, (Harcourt Brace Jovanovich)
Data Acquisition & Process Control w/ the M68HC11 Microcontroller
- Frederick Driscoll, Robert Coughlin, Robert Villanucci of Wentworth Institute
of Technology.
- 1994, Macmillan Publishing Company / ISBN 0-02-33055-X
- example applications of interfaces to various sensors.
Design with Microcontrollers
- John B. Peatman (professor at Georgia Tech) / ISBN 0-07-049238-7
- This book is on a more advanced level. Uses both the 68hc11 and Intel 8096 as
example systems.
Embedded Systems Programming in C and Assembler
- John Forrest Brown / ISBN 0-442-01817-7
- Van Nostrand Reinhold, 1994 - 304 pages, $49.95
- covers Motorola and Intel processors
Microcomputer Engineering
- Gene H. Miller / ISBN 0-13-584475-4
- 1993, Prentice Hall, Englewood Cliffs, NJ 07632
- Explains basics. Many clear, concise examples.
Microcontroller Technology, The 68HC11
- Peter Spasov / ISBN 0-13-583568-2 - Prentice Hall
Microcontrollers: Architecture, Implementation, & Programming
- Kenneth Hintz and Daniel Tabak - ISBN 0-07-028977-8
- 1992, McGraw-Hill Inc.
Mobile Robots: Inspiration to Implementation
- Joseph L. Jones and Anita M. Flynn - Very hands-on book.
- Focuses on every detail involved in design & construction of
“Rug Warrior”, based on 68HC11A1, using Interactive C compiler.
Programming Microcontrollers in C
- Ted Van Sickle - ISBN 1-878707-14-0
- 1994, HighText Publications - 394 pages, $29.95
- thorough tutorial on C programming, covers aspects of C programming
specific to embedded systems
MC68HC11: An Introduction
- Han-Way Huang - West Publishing / ISBN 0-314-06735-3
Single- and Multiple-Chip Microcomputer Interfacing

5

3.1 Getting Started

Important! Be sure to browse the README.TXT file on your Starter
Package disk for information on what’s on the disk and how to use it. Use
any text editor or browser you like, such as Notepad or DOS edit, and follow
the instructions for copying the disk contents onto your hard drive.
 MicroCore-11 has a demonstration program already programmed
into the EEPROM when you receive it. This is a useful program for testing
your communications setup and monitoring & controlling the various I/O
lines of the micro.
 You can power the module in one of two ways:
 1) supply power via the external power connector; just connect
a DC voltage greater than 5.6 Volts to the external power connector (J1)
on MicroCore-11. Red is positive, and black is negative (ground).
CAUTION! Make sure you have the polarity correct!
or, 2) supply regulated 5VDC via the appropriate pins on the 26-pin
connector (H1). See Appendix A for the pinout diagram of MicroCore-11.
CAUTION! Double-check your connections before applying power!
 To use the demo program, connect the supplied serial cable
between MicroCore-11 and a serial port on your PC. (With some PCs,
you will need a 9-pin to 25-pin adapter.) Run a terminal program (such
as ProCommPlus, or the Windows Terminal program) on your PC, in your
terminal program, set the baud rate to 2400 (38400 if you’re using a Turbo
MicroCore-11), parity to NONE, # DATA BITS = 8, and #STOP BITS = 1.
With SW2 set to RUN, press the MicroCore-11 RESET button. LED D1
will blink twice, indicating the demo programming is running. Hit <ENTER>
on your keyboard. A menu of commands will appear on your terminal
window’s screen, followed by a command prompt “?” symbol. Each
command is activated by a single keystroke. A sample screen showing
results of each command is shown in Figure 3.1. Typing a command not
listed will cause the menu to be re-displayed.
 The A and D commands in the demo program allow you to examine
the states of PORTA and PORTD. Try putting switches on some of these
input port lines. Use a 10K or higher pullup resistor on one side and connect

20

 HW Echo Mode should be set to Normal.
 Leave the Config Reg. setting at 0 (ie. “don’t change”) unless you
want the bootloader to change the value of the Config. register. (Remember,
the new setting only takes effect following a Reset of the HC11).
 After exiting Bootstrap Options, click on Bootstrap Download, and
select the s-record file you wish to download. Press the RESET button
and slide the Write Protect switch (SW3) to WRITE. Then click OK. When
finished, slide SW3 back to PROT, SW2 to RUN, and press RESET.

5.0 SOURCES

Computer Bulletin Board Systems
•Motorola Freeware BBS
(512) 891-3733 Austin,TX
(619) 279-3907 San Diego, CA
•Dunfield Development Systems BBS: (613) 256-6289

Internet Resources
•Technological Arts: Check here often for new product info, new
utilities, tips, applications information, and resources on the web.
http://www.technologicalarts.com
 e-mail address: support@technologicalarts.com
•Motorola Freeware: http://freeware.aus.sps.mot.com/freeweb/
•University of Alberta: ftp://ftp.ee.ualberta.ca

Publications
Motorola Fax-on-Demand: (602) 244-6609 or 800-774-1848
Motorola Semiconductor Literature Distribution Center
P.O. Box 20912, Phoenix, AZ 85036 1-800-441-2447
• Motorola Microcontroller Development Tools Directory
 (MCUDEVTLDIR/D)
• M68HC11 Reference Manual (M68HC11RM/AD)
• M68HC11 E-series Technical Data book (MC68HC11E/D)
• MCU Toolbox (MCUTLBX/D)
• Motorola Freeware PC-Compatible 8-Bit Cross-Assemblers User’s

6

the other side of the switch to ground. Note that PA0-PA2 are inputs, PA3
and PA7 are programmable as input or output, and default to inputs.
PA4-PA6 are outputs only. In the demo program, PA6 is used as a tone
output for a speaker. It is also connected to LED D1, to provide a visual
output. You can drive a small piezo speaker directly by hooking one end
to PA6 through a 330-Ohm resistor, and the other end to ground. When
you press RESET, or type “S” when the demo program is running, you will
hear two beeps from the speaker (or the LED will flash twice).
 Typing a digit between 4 and 6 causes the output state of the
corresponding PORTA line to be toggled (eg. typing 5 causes PA5 to flip
to a high if it was low previously, or a low if it was high previously). This
allows you to activate LEDs (when driving LEDs directly from an output
port, limit the current to a maximum of 10mA with 330-Ohm current limiting
resistors on each LED); or drive relays, solenoids, or motors (with
appropriate driver circuits). Typing R causes the values of all 8
analog-to-digital converter (ANALOG) channels of PORTE to be
continuously updated on the screen (near Real-time updates) The display
will continue to be updated until a key is pressed. The display will continue
to be updated until a key is pressed. Analog channels
(ANALOG0-ANALOG7) can read voltages between 0 and 5 Volts. Try
putting a 10K-Ohm (or higher) pot across the VRL and VRH pins (pins 19
and 9), and connect the wiper to an ANALOG input through a 1K-Ohm
current limiting resistor; then change the pot setting, monitoring the
ANALOG values on the screen. Unused ANALOG channels should be
grounded to VRL through a minimum 1K-Ohm resistor. These inputs are
not internally protected from electrostatic discharge (ESD) as the other input
port lines are. (HELPFUL HINT: Grounding multiple adjacent analog inputs
is easy by plugging a bussed resistor SIP in your breadboard and jumpering
the SIP common pin to VRL.)

3.2 Writing Your First Program

 If you are already experienced with the 68HC11 family of
microcontrollers, you can skip this section. However, you may find the

19

working in C within a DOS environment. If you have purchased the Windows
version, however, the following section provides some basic hints and
guidelines for setting it up and using it with the MicroCore-11.
 The LINKER is the part of a compiler package that marries the
software with the particular hardware configuration being used. Therefore,
you need to setup the LINKER before using ICC11. Find the Linker setup
tab by pulling down the OPTIONS menu to COMPILER. In the Linker, “text”
refers to code, and should be the starting address of EEPROM (or wherever
you plan to put the code); “data” is for variables, and should be the start
of RAM; “stack” should be the end of RAM, since it builds “downward”.
There are some exceptions: if you have a large amount of RAM, you would
probably start the “data” section following the last address of on-chip
registers, and start the stack just below the internal register block.
 If you have ICC11 V4.5 or higher, you can use the SetupWizard
feature of the Options|Compiler|Linker pulldown menu. For
MicroCore-11(8K) select Generic 8K Upper ROM, 32K lower RAM”. For
MicroCore-11(32K) select Generic 32K Upper ROM, 32K lower RAM”.
 Every C program that you write requires the file vectors.c to be
included (either explicitly at the end of the program, or as the last file in
the Project file, if you are using the ProjectBuilder feature of ICC11). You
should examine and compile the program “hello.c”, in the Examples
directory of ICC11. This program has the essentials set up for you. The
only time you would not need vectors.c is if you had a resident monitor
that was controlling the loading and execution of a user program (such as
the Buffalo monitor from Motorola).
 To compile and download hello.c, select “Compile to Executable”
in the pulldown menu. ICC11 will compile, assemble, and link, creating
an s-record file called hello.s19. This is the file you will download to your
board.
 Make sure Bootstrap Download Mode is checked in the
TERMINAL pulldown menu. Then activate the terminal window, and click
on Bootstrap Options.
 Select EXTERNAL EEPROM as the Bootloader Programming
setting.

7

suggestions here useful to familiarize yourself with the essentials of getting
a program to work the first time.
 As mentioned in the previous section, a demo program resides
in your microcontroller’s EEPROM when you receive it. This demo program
is written in Motorola’s Freeware AS11 cross-assembler syntax, and is
intended to provide you with an easy way to verify your hardware setup
(ie. power supply, serial connection, PC software, etc.). It also provides
you with an excellent starting point for developing your own program. Rather
than starting from scratch, you can make a copy of the demo source file
and remove and add features, to transform it into what you need.
 Many people approach programming by spending hours or even
days writing a program from scratch, then assembling it and downloading
it. Then they cross their fingers and reset the board, praying everything

 MICROCORE-11 DEMO PROGRAM MENU

 A => SHOW PORT A STATUS
 C => CLEAR PORT A OUTPUTS
 D => SHOW PORT D STATUS
 R => SHOW REAL-TIME ANALOG VALUES
 S => BEEP SPEAKER (CONNECT TO PA6)
 ?
 <A>
 PORTA=000
 <D>
 PORTD=001
 <R>
 AD0=000 AD1=000 AD2=000 AD3=000 AD4=100 AD5=100
AD6=099 AD7=100
 <S>
 >>> BEEP! <<<

Figure 3.1 MicroCore-11 Demo Software Screen

18

4.27 Exploring Further with PCBUG11. For information about PCBUG11
commands and their syntax, enter:
 help
at the PCBUG11 prompt. For complete details on PCBUG11, refer to the
PCBUG11 Manual. To access the entire manual with your
web browser, follow the PCBUG11 link provided on the RESOURCE page
of our website (see back cover for our URL).

4.3 Using SBASIC

Here are some example configurations and the approprate /c and /v
compiler options used to specify the starting addresses for code (EEPROM,
usually) and variables (RAM), where infile is your SBASIC program
filename, and outfile is the name you want the target assembly language
file to be called.

MicroCore-11 with 8K EEPROM:
 sbasic infile /ce000 /v1040 /s0fff >outfile.asc
MicroCore-11 with 32K EEPROM:
 sbasic infile /c8000 /v1040 /s0fff >outfile.asc

The resulting file outfile.asc is in assembler source code, and can be
viewed and edited if you wish. When ready, assemble the file to produce
an s-record file suitable for downloading to your board. Use the assembler
provided with SBASIC, as follows:
 asmhc11 outfile
and it will produce the file outfile.s19.

4.4 Using ImageCraft’s ICC11 Windows C Compiler

 ImageCraft offers a good low-cost ANSI C compiler, which is quite
popular in the 68HC11 community. A Freeware DOS version is included
on your Starter Package disk, and is intended for those who are quite familiar

8

will work. About 99% of the time, their hopes are dashed, as the board
does something completely different than they expected, or worse– it
appears to do nothing! At that point, they either give up, or purchase
expensive diagnostic equipment, such as logic analyzers and in-circuit
emulators to begin the long hard road of diagnosing and correcting their
software and/or hardware mistakes.
 A much more sensible– and rewarding– approach is to start with
something that works, and then add new features incrementally. The
modular design of MicroCore-11 gives you that starting point-- hardware
that works, and software that works. Now, if you build on that incrementally,
each diagnostic step is small and manageable. And it will probably end
up taking a lot less time, and costing a lot less money.
 A powerful asset for program development is the serial
communications interface (SCI). The SCI gives you a window on what’s
going on inside the microcontroller. Simple diagnostic messages, placed
at strategic points in your evolving program, will be invaluable in debugging
your software and hardware.
 If you look at the demo source code (mc11demo.asm), you will
see that it consists of an initialization section, one main loop, and several
subroutines and interrupt routines. The main subroutine is called
ProcessCommand. Its primary function is to interpret a single-character
command that is received via the serial port, and perform the appropriate
action for that command. You can easily extend the list of commands within
the ProcessCommand subroutine by adding code to recognize and process
other single-character commands you define. Then it is simply a matter
of writing those subroutines to perform the functions you wish to implement.
This software structure gives you a way to independently test new functions
you are trying to implement.
 For example, let’s suppose you are implementing an autonomous
vehicle, using a miniature toy car. You will need to read position and collision
sensors, and control the speed and directrion of one or more motors. First
write a basic motor-speed control routine, and assign some commands to
test it. You could assign “F” for faster (increase the motor speed), and “S”
for slower (to decrease motor speed). Then implement a pulse-width

17

CONFIG register contents. There is one caveat, however. The new value
of the CONFIG register will not take effect until following a RESET of the
‘HC11. Therefore, PCBUG11 will return a BAD MEMORY error when you
try to modify the location. This is because the Memory Set and Memory
Modify commands automatically attempt to verify the change they just
made. In the case of the CONFIG register, reading location $103f returns
the contents of a register which reflects the value of the CONFIG register
at the time of RESET. It is a read-only register. The actual EEPROM cell
implementing the CONFIG register, is a Write-only location, from the user’s
point of view.

4.26 Using PCBUG11’s Terminal Window. PCBUG11 has a basic
communications terminal which is useful for testing and debugging your
software. To use it, set up the necessary communications parameters such
as baud rate, parity, etc. by entering:
 control
A list of parameters is displayed. Use the Page Down and Page Up
keys to move to the parameter that needs changing. Use the Up and Down
arrow keys to make the changes, or enter new values via the
keyboard. When you’re done, press the ESC key to return to the PCBUG11
prompt. Now enter:
 term
to open the terminal window. If you have the Demo program loaded
in your board, you can use the terminal window to interact with it.
First, make sure you have set up the baud rate, etc., as required for
the demo program. Then, switch your board to RUN, and press
RESET. Pressing ENTER will cause the menu of the demo program to
be displayed. Select the menu commands, as you desire. When you have
finished using the demo program, you can return to PCBUG11 by hitting
ESC. To re-establish communication between PCBUG11 and the ‘HC11,
reset your board in BOOT mode, and enter:
 baud 9600
 restart

9

modulation scheme in your motor speed routine, decreasing the pulse-width
by some increment every time the “S” key is pressed, and incrementing
pulse-width by the same amount every time the “F” key is pressed. Of course
you will want to put tests for minimum and maximum pulse-widths before
you decrement or increment, so that the motor doesn’t suddenly jump from
stopped to full speed when the
pulse-width value “wraps” around.
 Note: If you plan to incorporate all or part of the demo program
in your own code, and you’re using a different cross-assembler than AS11,
you may have to revise the syntax.

3.21 A Very Simple Program If you are a beginner, the size of the demo
program may look overwhelming, and you may wonder what is really
required just to do something very simple. In reality, you can throw away
almost everything, ending up with about a half dozen lines of code, to
produce a very simple program. Rule #1: Every program requires a Reset
Vector (located at $fffe and $ffff), since the contents of these locations is
loaded into the Program Counter immediately after reset. Therefore, the
Reset Vector should point to the beginning of your code.
 Below is an example of a very basic program, which just turns
on the LED on PORTA (PA6), and then waits in an infinite loop. (It was
written for an 8K EEPROM space, so if your board has 32K, you can change
the org to $8000, but it’s not necessary)

 org $e000 ;start at top 8K EEPROM

begin: ldaa #$40 ;write a logic high to PA6
 staa $1000 ; (and logic low to all other portA bits)
 bra * ;branch forever (until reset occurs)

 org $fffe ;define the reset vector to point to
 fdb begin ; the beginning of your code

Now let’s take it one more step: blink the LED on and off. To make the

16

To run your program, reset the board in RUN mode. To use PCBUG11
again, reset your board in BOOT mode, and type:
 restart

Again, switch on access to external memory with:
 ms 103c e5

4.23 Manipulating Memory.
To change the value stored in a RAM, external EEPROM, or register location
(eg. clear location $2000), simply use the Memory Set command, as
follows:
 ms 2000 00
You can view locations, and modify them as you require, by using
the Memory Modify command, as follows:
 mm 2000
In this example, PCBUG11 will display the current value of location $2000.
If you wish to change it, type the new value, and press ENTER. If not,
just press ENTER. The next memory location will be displayed. To end
the Memory Modify mode, press ESC on your keyboard.

4.24 Programming the CONFIG Register. The CONFIG register ($103f),
allows the user to enable or disble such things as the
EEPROM, ROM (or EPROM), and COP (watchdog timer). The CONFIG
register is implemented in EEPROM, so you need to specify this in
PCBUG11 before you can modify it.
Enter the following command:
 eeprom 103f
If PCBUG11 returns a message saying Erase-before-write disabled, enter
the following command to enable automatic erase:
 eeprom erase enable
Then make sure the PTCON bit in the Block Protect Register is
cleared:
 ms 1035 0f
Now you can use Memory Modify or Memory Set to change the

10

blinking slow enough to perceive with the human eye, we will write a
subroutine to create a half-second delay.

Rule #2: If you are using interrupts, or incorporating any subroutines in
your program, you must initialize the stack pointer at the beginning of your
program.

 org $e000 ;start of top 8K EEPROM

begin: lds #$fff ;initialize the stack pointer
loop: ldaa #$40 ;write a logic high to PA6
 staa $1000 ; (and a logic low to all other portA bits)
 bsr Delay ;do a time delay
 clr $1000 ;make all portA bits logic low
 bsr Delay
 bra loop ;do it all again

Delay:
 ldy #$ffff
D1: dey ;pad delay loop with extra cycles
 iny ; for total of 15 cycles
 dey ;this gives approx. 1/2 second at 8MHz
 bne D1
 rts

 org $fffe ;define the reset vector to point to
 fdb begin ; the beginning of your code

3.3 Downloading Your Code

 Once you have assembled your code with no errors, you can
download the resulting s-record file (filename.s19) to your board using the
appropriate DOS batch file provided or via the Windows application
MicroLoad. Connect the supplied serial cable (handshaking signals are

15

in BOOT mode):
 pcbug11 -e port=2
for a Turbo board, enter:
 pcbug11 -e baud=9600 port=2
(if you’re using COM1, omit the port=2 parameter).
 If you prefer to use hexadecimal numbers in your PCBUG11
session (instead of the default decimal notation), enter the following
command at the PCBUG11 prompt:
 control base hex
Enable access to external memory by changing the HPRIO register:
 ms 103c e5

4.22 Loading an S-record File into external EEPROM. First tell
PCBUG11 the range of addresses that contain EEPROM, as follows:
 eeprom f800 ffff
This is done strictly to provide some delay after each byte is written.
A single byte in 32K EEPROM takes up to 10 ms to write, while bytes in
an 8K EEPROM device require up to 5 ms per byte.

Then disable Erase-before-Write, since external EEPROM does
this automatically:
 eeprom erase disable
Slide the Write Protect switch (SW3) to WRITE, and then you’re ready to
load your s-record file. Suppose you have generated a file called
myprog.s19, use the following command to load it into EEPROM:
 loads myprog
If it is in a different directory, (eg. c:\myfiles) you should specify
the directory path. For example:
 loads \myfiles\myprog
To prevent unwanted modification of EEPROM locations, slide SW3 back
to PROT when you are finished. To verify that your file myprog.s19 was
actually written to EEPROM, use the Verify command:
 verf \myfiles\myprog

11

jumpered inside the cable for use with DOS) between connector J2 on your
module and COM1 or COM2 of your PC. (You can use a different COM
port, but if you’re downloading via DOS, you will need to edit the batchfile
to reflect the COM port number you use).
3.31 Downloading via DOS. Use xload1.bat (for COM1) or xload2.bat
(for COM2). if you’re using the Turbo version of MicroCore-11, use
xload91.bat or xload92.bat instead. If required, use a text editor to modify
these batch files to suit your needs. On a Windows95 system, you may
have to add “\dev\” to every reference to the com port path (eg. copy %1.s19
\dev\com1).
 You may find using the batchfile more convenient if you put it into
your working directory, along with the assembler or compiler you are using,
and the source code you are writing. Make sure to put the associated boot
file in the directory as well (xload.bin is required by xload1.bat and
xload2.bat).
 Always reset the board in BOOT mode and slide the WRITE PROT
switch (SW3) to WRITE just before you download. After downloading,
switch SW3 back to PROT, and switch SW2 to RUN mode. Press RESET
to start your code running.

Note: avoid powering up the board with the WRITE PROT switch in the
WRITE position. If you do so, one or more external EEPROM locations
may get inadvertently corrupted. If this happens, your code may not work
as intended, and you’ll have to repeat the above procedure to download
it again.

3.32 Downloading via Windows. You can use the supplied MicroLoad
for Windows application to send your .s19 file to your board.

Other Windows applications you can use are: HCLOAD, a shareware
program for W9x/NT available via our RESOURCES webpage, and ICC11
for Windows (ImageCraft). See section 4.2 for details on using the ICC11
bootloader.

14

xload2.bat (for COM2). For example, to download your S-record file called
myprog.s19 to MicroCore-11, via COM2, at the DOS prompt, you would
enter:
 xload2 myprog

4.2 Using PCBUG11 with MicroCore-11

 Motorola’s PCBUG11 is a flexible, powerful, and easy-to-use
program that runs on a PC. It allows you to examine and modify on-chip
memory (RAM, EEPROM, and EPROM), load HC11 code, debug, trace,
erase EEPROM, disassemble blocks of code, assemble line-by-line, and
even includes a basic terminal program. What’s more, it works with all
varieties of HC11 micros, and is fully compatible with all configurations of
MicroCore-11. PCBUG11 is included on your Starter Package disk, and
is also available on the Resource page of our website. It is a self-extracting
archive, so just copy it to the directory on your harddrive where you want
it to reside, and type pcbug342 at the DOS prompt to extract all the files.
 A Windows 95/NT version of PCBUG11 recently become available
on the internet, and can be downloaded via a link on the RESOURCES
page of our website.

4.21 Running PCBUG11. Always RESET your module in BOOT mode
before starting PCBUG11. It is important to make sure there are no
background tasks running on you PC, such as faxmodem drivers, networks,
etc. PCBUG11 needs to access the serial port chip directly, and does not
co-exist very happily with other programs. Whenever possible, start
PCBUG11 directly from DOS (not a DOS shell). If you can’t get it to work
at all, visit Motorola’s freeware website, and look for Application Snapshots
dealing with PCBUG11 for more tips on making it work.
 It is also strongly recommended that you get the Adobe format
version of the Motorola’s PCBUG11 User Manual. Look for the link on our
website RESOURCES page.
 Type the following command at the DOS prompt (after RESET

12

3.4 MicroCore-11 Memory Map

 Note that internal MCU memory blocks such as RAM, registers,
and EEPROM take priority over any external devices mapped into their
address space. In some situations, you may wish to move the internal RAM
and/or Register Block to a different 4K address boundary. To do this,
change the value of the INIT register in the first few lines of your code.
Refer to the 68HC11 Programming Reference Guide for information on the
INIT registers. Take care when relocating RAM, when it is to be used for
the stack. This is especially important if you’re using ImageCraft’s ICC11
C compiler, since it jumps to your startup code by executing a JSR
instruction. If your startup code moves internal RAM, then the subsequent
RTS instruction will not find the return address on the stack (it won’t even
find the stack). The solution to this is to define the stack in external RAM
($0fff, typically).

3.5 About the On-board Voltage Regulator

 MicroCore-11 uses a low-dropout LM2931Z-5 regulator in a TO-92
package, capable of dissipating about 500 mW at room temperature. It
has some nice features, such as a very low quiescent current, and will work
with an input voltage down to 5 Volts (or below), making it quite well-suited
to battery operation. It is also designed to withstand reverse polarity and,
if unused, does not present a load to an external regulated 5-Volt supply
applied via the 26-pin header H1. One drawback, however, is that it can
become unstable and start to oscillate at low temperatures, especially if
the input voltage source is connected to J1 via long wires. In the former
circumstance, the on-board 10uF tantalum capacitor can be replaced with
a higher value (47uF or 100uF). To compensate for long lead-in wires,
add capacitance of 100uF or so at, or close to, the J1 connector.

4 REFERENCE

4.1 How EEPROM is Programmed

 MicroCore-11 uses parallel EEPROM for program storage, and

13

is “in-system programmable”, using the MCU in special bootstrap mode
to erase and load the code via any serial port. This means you can erase
and re-program your code right in-circuit, without the need for special
programming boards and UV erasers. This approach results in a low-cost,
easy-to-use configuration suitable for education and new product
development. Also, there is nothing proprietary about the design
configuration and the parts used. The MCU is a standard Motorola part--
you can buy it from Technological Arts or any Motorola supplier to use in
your application, without being concerned about availability and licensing.

Bootstrap Mode.
All 68HC11 MCUs contain an internal bootstrap loader program in ROM.
This program runs whenever the chip is powered up or reset with the mode
select pins configured for SPECIAL BOOTSTRAP mode (see Motorola
68HC11 Reference Manual for details). This configuration can be selected
on MicroCore-11 by placing the BOOT/RUN switch in the BOOT position.
When the RESET button is pressed (or when a power-on event occurs),
the MCU executes the internal bootstrap program (bootloader ROM source
code listings can be found in Appendix B of the M68HC11 Reference
Manual). It first initializes the serial port (SCI), and waits in a loop checking
its receive buffer until it gets a value of $FF (BREAK control character).
It uses that character to determine the incoming baudrate, and adjusts its
BAUD register accordingly. It then places each byte it receives in RAM,
storing them sequentially, starting at address 0 and continuing until a
timeout delay has elapsed with no characters arriving at the serial port.
At this point, the internal bootstrap program loads the Program Counter
with 0, causing the CPU to begin executing the program just loaded into
RAM. Thus, the program that you have just downloaded begins executing.
This feature of the 68HC11 allows an EEPROM erase/write routine to be
placed in RAM and executed automatically. Routines for programming
external EEPROM/RAM (in expanded mode) from a Motorola s-record file
are included on your MicroCore-11 Starter Package disk. The source code
file is called xload.asm.
 To program the EEPROM, use xload1.bat (for COM1) or

