
2
68HC12 Assembly
Programming

2.1 Objectives
After completing this chapter you should be able to:

• Use assembler directives to allocate memory
blocks, define constants, and create a message
to be output

• Write assembly programs to perform simple
arithmetic operations

• Write program loops to perform repetitive
operations

• Use program loops to create time delays

• Use Boolean and bit manipulation instructions
to perform bit field manipulations

2.2 Assembly Language Program Structure

An assembly language program consists of a sequence of statements that tells the computer
to perform the desired operations. From a global point of view, a 68HC12 assembly program
consists of three sections. In some cases these sections can be mixed to provide better algorithm
design. The three sections are:

• Assembler directives. Assembler directives instruct the assembler how to process
subsequent assembly language instructions. Directives also provide a way to
define program constants and reserve space for dynamic variables. Some directives
may also set a location counter.

• Assembly language instructions. These instructions are 68HC12 instructions.
Some instructions are defined with labels.

• Comments. There are two types of comments in an assembly program. The first
type is used to explain the function of a single instruction or directive. The second
type explains the function of a group of instructions or directives or a whole rou-
tine. Adding comments makes a program more readable.

Each line of a 68HC12 assembly program, excluding certain special constructs, is com-
prised of four distinct fields. Some of the fields may be empty. The order of these fields is:

1. Label

2. Operation

3. Operand

4. Comment

2.2.1 The Label Field
Labels are symbols defined by the user to identify memory locations in the programs and

data areas of the assembly module. For most instructions and assembler directives, the label is
optional. The rules for forming a label are as follows:

• A label must start at column one and begin with a letter (A-Z, a-z), and the letter
can be followed by letters, digits, or special symbols. Some assemblers permit spe-
cial symbols to be used. For example, the assembler from IAR Inc. allows a symbol
to start with a question mark (?), at character (@), and underscore (_), in addition to
letters. Digits and the dollar ($) character can also be used after the first character
in the IAR assembler.

• Most assemblers restrict the number of characters in a label name. The as12
assembler reference manual does not mention the limit. The IAR assembler allows
a user-defined symbol to have up to 255 characters.

• The as12 assembler allows a label to be terminated by “:”.

Example 2.1
▼

Valid and Invalid labels.
The following instructions contain valid labels:
begin ldaa #10 ; label begins in column 1

30 Chapter 2 ■ 68HC12 Assembly Programming

print: jsr hexout ; label is terminated by a colon
jmp begin ; instruction references the label begin

The following instructions contain invalid labels:
here is adda #5 ; a space is included in the label
loop deca ; labels begins at column 2

▲

2.2.2 The Operation Field
This field contains the mnemonic names for machine instructions and assembler directives.

If a label is present, the opcode or directive must be separated from the label field by at least one
space. If there is no label, the operation field must be at least one space from the left margin.

Example 2.2
▼

Examples of operation fields
adda #$02 ; adda is the instruction mnemonic
true equ 1 ; equate directive equ occupies the operation field

▲

2.2.3 The Operand Field
If an operand field is present, it follows the operation field and is separated from the oper-

ation field by at least one space. The operand field may contain operands for instructions or
arguments for assembler directives. The following instructions include the operand field:

TCNT equ $0084 ; $0084 is the operand field
TC0 equ $0090 ; $0090 is the operand field

2.2.4 The Comment Field
The comment field is optional and is added mainly for documentation purposes. The com-

ment field is ignored by the assembler. Here are the rules for comments:

• Any line beginning with an * is a comment.

• Any line beginning with a ; (semi-colon) is a comment. In this book, we will use ;
to start a comment.

• You must have a ; (semi-colon) prefixing any comment on a line with mnemonics.

Examples of comments appear in the following instructions:
; this program computes the square root of N 8-bit integers.
org $1000 ; set the location counter to $1000
dec lp_cnt ; decrement the loop count

In this chapter, we will use the Motorola Freeware cross-assembler as12 as the standard to
explain every aspects of the assembly programming.

2.2 ■ Assembly Language Program Structure 31

2.3 Assembler Directives

Assembler directives look just like instructions in an assembly language program, but they
tell the assembler to do something other than creating the machine code for an instruction. The
available assembler directives vary with the assembler. Interested readers should refer to the
user’s manual of the specific assembler for details.

We will discuss assembler directives supported by the as12 in detail. In the following dis-
cussion, statements enclosed in brackets [] are optional. All directives and assembly instruc-
tions can be in either upper- or lowercase.

End
The end directive is used to end a program to be processed by the assembler. In general, an

assembly program looks like this:
(your program)
end

The end directive indicates the logical end of the source program. Any statement following
the end directive is ignored. A warning message will be raised if the end directive is missing
from the source code; however, the program will still be assembled correctly.

org (origin)
The assembler uses a location counter to keep track of the memory location where the next

machine code byte should be placed. If the programmer wants to force the program or data array
to start from a certain memory location, then this directive can be used.

For example, the statement:
org $1000

forces the location counter to be set to $1000.
The org directive is mainly used to force a data table or a segment of instructions to start

with a certain address. As a general rule, this directive should be used as infrequently as possi-
ble. Using too many orgs will make your program less reusable.

db (define byte)
dc.b (define constant byte)
fcb (form constant byte)

These three directives define the value of a byte or bytes that will be placed at a given mem-
ory location. The db (or fcb, or dc.b) directive assigns the value of the expression to the mem-
ory location pointed to by the location counter. Then the location counter is incremented.
Multiple bytes can be defined at a time by using commas to separate the arguments.

For example, the statement:
array db $11,$22,$33,$44,$55

initializes five bytes in memory to:
$11
$22
$33
$44
$55

and the assembler will use array as the symbolic address of the first byte whose initial value is
$11. The program can also force these five bytes to a particular address by adding the org direc-
tive. For example, the sequence:

32 Chapter 2 ■ 68HC12 Assembly Programming

org $800
array db $11,$22,$33,$44,$55

initializes the contents of memory locations at $800, $801, $802, $803, and $804, to $11, $22,
$33, $44, and $55, respectively.

dw (define word)
dc.w (define constant word)
fdb (form double bytes)

These three directives define the value of a word or words that will be placed at a given
address. The value can be specified by an integer or an expression. For example, the statement:

vect_tab dw $1234, $5678

initializes the two words starting from the current location counter to $1234 and $5678, respec-
tively. After this statement, the location will be incremented by four.

fcc (form constant character)
This directive allows us to define a string of characters (a message). The first character in

the string is used as the delimiter. The last character must be the same as the first character
because it will be used as the delimiter. The delimiter must not appear in the string. The
space character cannot be used as the delimiter. Each character is encoded by its correspond-
ing ASCII code.

For example, the statement:
alpha fcc “def”

will generate the following values in memory:
$64
$65
$66

and the assembler will use the label alpha to refer to the address of the first letter, which is
stored as the byte $64. A character string to be output to the LCD display is often defined using
this directive.

fill (fill memory)
This directive allows a user to fill a certain number of memory locations with a given value.

The syntax of this directive is as follows:
fill value, count

where the number of bytes to be filled is indicated by count and the value to be filled is indi-
cated by value.

For example, the statement:
space_line fill $20, 40

will fill 40 bytes with the value of $20 starting from the memory location referred to by the
label space_line.

ds (define storage)
rmb (reserve memory byte)
ds.b (define storage bytes)

Each of these three directives reserves a number of bytes given as the arguments to the
directive. The location counter will be incremented by the number that follows the direc-
tive mnemonic.

2.3 ■ Assembler Directives 33

34 Chapter 2 ■ 68HC12 Assembly Programming

For example, the statement:
buffer ds 100

reserves 100 bytes in memory starting from the location represented by the label buffer. After
this directive, the location counter will be incremented by 100. The content(s) of the reserved
memory location(s) are not defined.

ds.w (define storage word)
rmw (reserve memory word)

Each of these directives increments the location counter by the value indicated in the num-
ber-of-words argument multiplied by two. In other words, if the ds.w expression evaluates to k
then the location counter is advanced by 2k. These directives are often used with a label. For
example, the statement:

dbuf ds.w 20

reserves 40 bytes starting from the memory location represented by the label dbuf. None of
these 40 bytes are initialized.

equ (equate)
This directive assigns a value to a label. Using equ to define constants will make our pro-

gram more readable.
For example, the statement:
loop_cnt equ 40

informs the assembler that whenever the symbol loop_cnt is encountered, it should be replaced
with the value of 40.

loc
This directive increments and produces an internal counter used in conjunction with the

backward tick mark (`). By using the loc directive and the ` mark you can write program seg-
ments like the following example, without thinking up new labels:

loc
ldaa #2

loop` deca
bne loop`
loc

loop` brclr 0,x $55 loop`

This code segment will work perfectly fine because the first loop label will be seen as
loop001, whereas the second loop label will be seen as loop002. The assembler actually
sees this:

loc
ldaa #2

loop001 deca
bne loop001
loc

loop002 brclr 0,x $55 loop002

You can also set the loc directive with a valid expression or number by putting that expres-
sion or number in the operand field. The resultant number will be used to increment the suffix
to the label.

2.4 Software Development Issues

A complete discussion of issues involved in software development is out of the scope of this
text. However, we do need to take a serious look at some software development issues because
embedded system designers must spend a significant amount of time on software development.

As we all know, software development starts with problem definition. The problem pre-
sented by the application must be fully understood before any program can be written. At the
problem definition stage, the most critical thing is to get you, the programmer, and your end
user to agree upon what needs to be done. To achieve this, asking questions is very important.
For complex and expensive applications, a formal, written definition of the problem is formu-
lated and agreed upon by all parties.

Once the problem is known, the programmer can begin to lay out an overall plan of how to
solve the problem. The plan is also called an algorithm. Informally, an algorithm is any well-
defined computational procedure that takes some value, or set of values, as input, and produces
some value, or set of values, as output. An algorithm is thus a sequence of computational steps
that transforms the input into the output. We can also view an algorithm as a tool for solving a
well-specified computational problem. The statement of the problem specifies in general terms
the desired input/output relationship. The algorithm describes a specific computational proce-
dure for achieving that input/output relationship.

An algorithm is expressed in pseudocode that is very much like C or PASCAL. What sepa-
rates pseudocode from “real” code is that in pseudocode, we employ whatever expressive
method that is most clear and concise to specify a given algorithm. Sometimes the clearest
method is English, so do not be surprised if you come across an English phrase or sentence
embedded within a section of “real” code.

An algorithm provides not only the overall plan for solving the problem but also documen-
tation to the software to be developed. In the rest of this book, all algorithms will be presented
in the following format:

Step 1
….

Step 2
….

An earlier alternative for providing the overall plan for solving software problems was the
use of flowcharts. A flowchart shows the way a program operates. It illustrates the logic flow of
the program. Therefore, flowcharts can be a valuable aid in visualizing programs. Flowcharts are
not only used in computer programming, they are also used in many other fields, such as busi-
ness and construction planning.

The flowchart symbols used in this book are shown in Figure 2.1. The terminal symbol
is used at the beginning and end of each program. When it is used at the beginning of a pro-
gram, the word Start is written inside it. When it is used at the end of a program, it contains
the word Stop.

The process box indicates what must be done at this point in the program execution. The
operation specified by the process box could be shifting the contents of one general purpose reg-
ister to a peripheral register, decrementing a loop count, and so on.

2.4 ■ Software Development Issues 35

The input/output box is used to represent data that are either read or displayed by the computer.
The decision box contains a question that can be answered either yes or no. A decision box

has two exits, also marked yes or no. The computer will take one action if the answer is yes and
will take a different action if the answer is no.

The on-page connector indicates that the flowchart continues elsewhere on the same page.
The place where it is continued will have the same label as the on-page connector. The off-page
connector indicates that the flowchart continues on another page. To determine where the flow-
chart continues, you need to look at the following pages of the flowchart to find the matching
off-page connector.

Normal flow on a flowchart is from top to bottom and from left to right. Any line that does
not follow this normal flow should have an arrowhead on it.

When the program gets complicated, the flowchart that documents the logic flow of the
program also becomes difficult to follow. This is the limitation of the flowchart. In this
book, we will use both the flowchart and the algorithm procedure to describe the solution
to a problem.

After you are satisfied with the algorithm or the flowchart, convert it to source code in one
of the assembly or high-level languages. Each statement in your algorithm (or each block of
your flowchart) will be converted into one or multiple assembly instructions or high-level lan-
guage statements. If you find an algorithmic step (or a block in the flowchart) requires many
assembly instructions or high-level language statements to implement, then it might be bene-
ficial to either (1) convert this step (or block) into a subroutine and just call the subroutine, or
(2) further divide the algorithmic step (or flowchart block) into smaller steps (or blocks) so that
it can be coded with just a few assembly instructions or high-level language statements.

The next major step is to test your program. Testing a program means testing for anomalies.
Here you will first test for normal inputs that you always expect. If the result is what you expected
then you go on to test the borderline inputs. Test for the maximum and minimum values of the
input. When your program passes this test, then test for illegal input values. If your algorithm
includes several branches, then you must use enough values to exercise all the possible branches.
This is to make sure that your program will operate correctly under all possible circumstances.

In the rest of this book, most of the examples are well defined. Therefore, our focus is on
how to design the algorithm that solves the specified problem as well as how to convert the
algorithm into source code.

36 Chapter 2 ■ 68HC12 Assembly Programming

Terminal

Process

Input or
output

Decision
yes

no

Subroutine

A

B

A

on-page connector

off-page connector

Figure 2.1 • Flowchart symbols used in this book

2.5 Writing Programs to do Arithmetic

In this section, we will use small programs that perform simple computations to demon-
strate how a program is written.

Example 2.3
▼

Write a program to add the numbers stored at memory locations $800, $801, and $802, and
store the sum at memory location $900.

Solution: This problem can be solved by the following steps:

Step 1
Load the contents of the memory location at $800 into accumulator A.

Step 2
Add the contents of the memory location at $801 into accumulator A.

Step 3
Add the contents of the memory location at $802 into accumulator A.

Step 4
Store the contents of accumulator A at memory location $900.
These steps can be translated into the as12 assembly program as follows:
org $1000 ; starting address of the program
ldaa $800 ; place the contents of the memory location $800 into A
adda $801 ; add the contents of the memory location $801 into A
adda $802 ; add the contents of the memory location $802 into A
staa $900 ; store the sum at the memory location $900
end

▲

Example 2.4
▼

Write a program to subtract the contents of the memory location at $805 from the sum of
the memory locations at $800 and $802, and store the result at the memory location $900.

Solution: The logic flow of this program is illustrated in Figure 2.2. The assembly program is as
follows:

org $1000 ; starting address of the program
ldaa $800 ; copy the contents of the memory location at $800 to A
adda $802 ; add the contents of memory location at $802 to A
suba $805 ; subtract the contents of memory location at $805 from A
staa $900 ; store the contents of accumulator A to $805
end

2.5 ■ Writing Programs to do Arithmetic 37

▲

Example 2.5
▼

Write a program to subtract five from four memory locations at $800, $801, $802, and $803.

Solution: In the 68HC12, a memory location cannot be the destination of an ADD or SUB
instruction. Therefore, three steps must be followed to add or subtract a number to or from a
memory location:

Step 1
Load the memory contents into an accumulator.

Step 2
Add (or subtract) the number to (from) the accumulator.

Step 3
Store the result at the specified memory location.

The program is as follows:
org $1000
ldaa $800 ; copy the contents of memory location $800 to A
suba #5 ; subtract 5 from A
staa $800 ; store the result back to memory location $800
ldaa $801
suba #5
staa $801
ldaa $802
suba #5
staa $802

38 Chapter 2 ■ 68HC12 Assembly Programming

Start

A ← [$801]

A ← [A] + [$802]

Α ← [Α] − [∃805]

Stop

$960 ← [A]

Figure 2.2 • Logic flow of program 2.4

2.5 ■ Writing Programs to do Arithmetic 39

ldaa $803
suba #5
staa $803
end

▲

Example 2.6
▼

Write a program to add two 16-bit numbers that are stored at $800~$801 and $802~$803,
and store the sum at $900~$901.

Solution: This program is very straightforward:
org $1000
ldd $800 ; place the 16-bit number at $800~$801 in D
addd $802 ; add the 16-bit number at $802~$803 to D
std $900 ; save the sum at $900~$901
end

▲

2.5.1 Carry/Borrow Flag
The 68HC12 can add and subtract either 8-bit or 16-bit numbers and place the result

in either 8-bit accumulators, A or B, or the double accumulator D. The 8-bit number stored
in accumulator B can also be added to index register X. However, programs can also be
written to add numbers larger than 16 bits. Arithmetic performed in a 16-bit microproces-
sor/microcontroller on numbers that are larger than 16 bits is called multiprecision arith-
metic. Multiprecision arithmetic makes use of the carry flag (C flag) of the condition code
register (CCR).

Bit 0 of the CCR register is the C flag. It can be thought of as a temporary 9th bit that is
appended to any 8-bit register or 17th bit that is appended to any 16-bit register. The C flag
allows us to write programs to add and subtract hex numbers that are larger than 16-bit. For
example, consider the following two instructions:

ldd #$8645
addd #$9978

These two instructions add the numbers $8645 and $9978.
$ 8 6 4 5

+$ 9 9 7 8
$1 1 F B D

The result is $11FBD, a 17-bit number, which is too large to fit into the 16-bit double accumu-
lator D. When the 68HC12 executes these two instructions, the lower sixteen bits of the answer,
$1FBD, are placed in double accumulator D. This part of the answer is called the sum. The leftmost
bit is called a carry. A carry of 1 following an addition instruction sets the C flag of the CCR register
to 1. A carry of 0 following an addition clears the C flag to 0. This applies to both 8-bit and 16-bit
additions for the 68HC12. For example, execution of the following two instructions:

ldd #$1245
addd #$4581

will clear the C flag to 0 because the carry resulting from this addition is 0. In summary:

• If the addition produces a carry of 1, the carry flag is set to 1.

• If the addition produces a carry of 0, the carry flag is cleared to 0.

2.5.2 Multiprecision Addition
For a 16-bit microcontroller like the 68HC12, multiprecision addition is the addition of

numbers that are larger than 16 bits. To add the hex number $1A598183 to $76548290, the
68HC12 has to perform multiprecision addition.

1 1 1
$ 1 A 5 9 8 1 8 3

+$ 7 6 5 4 8 2 9 0
$ 9 0 A E 0 4 1 3

Multiprecision addition is performed one byte at a time, beginning with the least significant
byte. The 68HC12 does allow us to add 16-bit numbers at a time because it has the ADDD instruc-
tion. The following two instructions can be used to add the least significant 16-bit numbers together:

ldd #$8183
addd #$8290

Since the sum of the most significant digit has a sum greater than 16, it generates a carry that
must be added to the next more significant digit, causing the C flag to be set to 1. The contents
of double accumulator D must be saved before the higher bytes are added. Let’s save these two
bytes at $802-$803:

std $802

When the second-to-most significant bytes are added, the carry from the lower byte must be
added in order to obtain the correct sum. In other word, we need an “add with carry” instruc-
tion. There are two versions of this instruction: the ADCA instruction for accumulator A and
the ADCB instruction for accumulator B. The instructions for adding the second-to-most-sig-
nificant bytes are:

ldaa #$59
adca #$54

We also need to save the second-to-most-significant byte of the result at $801 with the fol-
lowing instruction:

staa $801

The most significant bytes can be added using similar instructions, and the complete pro-
gram with comments appears as follows:

ldd #$8183 ; place the lowest two bytes of the first number in D
addd #$8290 ; add the lowest two bytes of the second number to D
std $802 ; store the lowest two bytes of the sum at $802-$803
ldaa #$59 ; place the second-to-most significant byte of the first number in A
adca #$54 ; add the second-to-most-significant byte of the

; second number and carry to A
staa $801 ; store the second-to-most-significant byte of the sum at $801
ldaa #$1A ; place the most-significant byte of the first number in A
adca #$76 ; add the most-significant byte of the second number and carry to A
staa $800 ; store the most significant byte of the sum
end

40 Chapter 2 ■ 68HC12 Assembly Programming

2.5 ■ Writing Programs to do Arithmetic 41

Note that the LOAD and STORE instructions do not affect the value of the C flag (other-
wise, the program would not work). The 68HC12 does not have a 16-bit instruction with the
carry flag as an operand. Whenever the carry needs to be added, we must use the 8-bit instruc-
tion ADCA or ADCB. This is shown in the previous program.

Example 2.7
▼

Write a program to add two 4-byte numbers that are stored at $800~$803 and $804~$807,
and store the sum at $810~$813.

Solution: The addition should start from the least significant byte and proceed to the most sig-
nificant byte. The program is as follows:

org $1000 ; starting address of the program
ldd $802 ; place the lowest two bytes of the first operand in D
addd $806 ; add the lowest two bytes
std $812 ; save the sum of the lowest two bytes
ldaa $801 ; place the second-to-most-significant byte of the

; first operand in A
adca $805 ; add the second-to-most-significant byte of the

; second operand and carry to A
staa $811 ; save the sum of the second-to-most significant bytes
ldaa $800 ; place the most-significant byte of the first operand in A
adca $804 ; add the most-significant byte of the second

; operand and carry to A
staa $810 ; save the sum of the most-significant bytes
end

▲

2.5.3 Subtraction & the C Flag
The C flag also enables the 68HC12 to borrow from the high byte to the low byte during a

multiprecision subtraction. Consider the following subtraction problem:
$ 3 9

—$ 7 4

We are attempting to subtract a larger number from a smaller one. Subtracting $4 from $9
is not a problem:

$ 3 9
—$ 7 4

5

Now we need to subtract $7 from $3. To do this, we need to borrow from somewhere. The
68HC12 borrows from the C flag, thus setting the C flag. When we borrow from the next higher
digit of a hex number, the borrow has a value of decimal 16. After the borrow from the C flag,
the problem can be completed:

$ 3 9
—$ 7 4

$ C 5

42 Chapter 2 ■ 68HC12 Assembly Programming

When the 68HC12 executes a subtract instruction, it always borrows from the C flag. The
borrow is either 1 or 0. The C flag operates as follows during a subtraction:

• If the 68HC12 borrows a 1 from the C flag during a subtraction, the C flag is set to 1.

• If the 68HC12 borrows a 0 from the C flag during a subtraction, the C flag is set to 0.

2.5.4 Multiprecision Subtraction
For a 16-bit microcontroller, multiprecision subtraction is the subtraction of numbers that

are larger than 16 bits. To subtract the hex number $16753284 from $98765432, the 68HC12 has
to perform multiprecision subtraction:

$ 9 8 7 6 5 4 3 2
—$ 1 6 7 5 7 2 8 4

Like multiprecision addition, multiprecision subtraction is performed one byte at a time,
beginning with the least significant byte. The 68HC12 does allow us to subtract two bytes at a
time because it has the SUBD instruction. The following two instructions can be used to sub-
tract the least significant two bytes of the subtrahend from the minuend:

ldd #$5432
subd #$7284

Since a larger number is subtracted from a smaller one, there is a need to borrow from the
higher byte, causing the C flag to be set to 1. The contents of double accumulator D should be
saved before the higher bytes are subtracted. Let’s save these two bytes at $802~$803:

std $802

When the second-to-most-significant bytes are subtracted, the borrow 1 has to be sub-
tracted from the second-to-most-significant byte of the result. In other words, we need a “sub-
tract with borrow” instruction. There is such an instruction, but it is called subtract with carry.
There are two versions: the SBCA instruction for accumulator A, and the SBCB instruction for
accumulator B. The instructions to subtract the second-to-most-significant bytes are:

ldaa #$76
sbca #$75

We also need to save the second-to-most-significant byte of the result at $801 with the fol-
lowing instruction:

staa $801

The most significant bytes can be subtracted using similar instructions, and the complete
program with comments is as follows:

org $1000 ; starting address of the program
ldd #$5432 ; place the lower two bytes of the minuend in D
subd #$7284 ; subtract the lower bytes of the subtrahend from D
std $802 ; save the lower two bytes of the difference
ldaa #$76 ; place the second-to-most-significant byte of the minuend in A
sbca #$75 ; subtract the second-to-most-significant byte of the

; subtrahend and the borrow from A
staa $801 ; save the second-to-most-significant byte of the difference
ldaa #$98 ; put the most-significant-byte of the minuend in A
sbca #$16 ; subtract the most-significant-byte of the

; subtrahend and the borrow from A
staa $800 ; save the most-significant-byte of the difference
end

2.5 ■ Writing Programs to do Arithmetic 43

Example 2.8
▼

Write a program to subtract the hex numbers stored at $804~$807 from the hex number
stored at $800~$803, and save the difference at $900~$903.

Solution: We will perform the subtraction from the least significant byte towards the most sig-
nificant byte as follows:

org $1000 ; starting address of the program
ldd $802 ; place the lowest two bytes of the minuend in D
subd $806 ; subtract the lowest two bytes of the subtrahend from D
std $902 ; save the lowest two bytes of the difference
ldaa $801 ; put the second-to-most-significant byte of the minuend in A
sbca $805 ; subtract the second-to-most-significant byte of the

; subtrahend and the borrow from A
staa $901 ; save the second-to-most-significant byte of the difference
ldaa $800 ; put the most significant byte of the minuend in A
sbca $804 ; subtract the most significant byte of the subtrahend

; and the borrow from A
staa $900 ; save the most significant byte of the difference
end

▲

2.5.5 Binary-Coded-Decimal (BCD) Addition
Although virtually all computers work internally with binary numbers, the input and out-

put equipment generally uses decimal numbers. Since most logic circuits only accept two-val-
ued signals, the decimal numbers must be coded in terms of binary signals. In the simplest form
of binary code, each decimal digit is represented by its binary equivalent. For example, 2,538 is
represented by:

0010 0101 0011 1000

This representation is called binary-coded-decimal. If the BCD format is used, it must be pre-
served during arithmetic processing.

The principal advantage of the BCD encoding method is the simplicity of input/output con-
version; its major disadvantage is the complexity of arithmetic processing. The choice between
binary and BCD depends on the type of problems the system will be handling.

The 68HC12 microcontroller can add only binary numbers, not decimal numbers. The fol-
lowing instruction sequence appears to cause the 68HC12 to add the decimal numbers 25 and
31 and store the sum at the memory location $800:

ldaa #$25
adda #$31
staa $800

This instruction sequence performs the following addition:
$ 2 5

+$ 3 1
$ 5 6

When the 68HC12 executes this instruction sequence, it adds the numbers according to the
rules of binary addition and produces the sum $56. This is the correct BCD answer, because the

44 Chapter 2 ■ 68HC12 Assembly Programming

result represents the decimal sum of 25 + 31 = 56. In this example, the 68HC12 gives the appear-
ance of performing decimal addition. However, a problem occurs when the 68HC12 adds two
BCD digits and generates a sum greater than nine. Then the sum is incorrect in the decimal
number system, as the following three examples illustrate:

$ 1 8 $ 3 5 $ 1 9
+$ 4 7 +$ 4 7 +$ 4 7

$ 5 F $ 7 C $ 6 0

The answers to the first two problems are obviously wrong in the decimal number system
because the hex digits F and C are not between zero and nine. The answer to the third example
appears to contain valid BCD digits, but in the decimal system 19 plus 47 equals 66, not 60; this
example involves a carry from the lower nibble to the higher nibble.

In summary, a sum in the BCD format is incorrect if it is greater than $9 or if there is a
carry to the next higher nibble. Incorrect BCD sums can be adjusted by adding $6 to them. To
correct the examples, do the following:

1. Add $6 to every sum digit greater than nine.

2. Add $6 to every sum digit that had a carry of one to the next higher digit.

Here are the problems with their sums adjusted:
$ 1 8 $ 3 5 $ 1 9

+$ 4 7 +$ 4 7 +$ 4 7
$ 5 F $ 7 C $ 6 0

+$ 6 +$ 6 +$ 6
$ 6 5 $ 8 2 $ 6 6

The fifth bit of the condition code register is the half-carry, or H flag. A carry from the
lower nibble to the higher nibble during the addition operation is a half-carry. A half-carry of
one during addition sets the H flag to one, and a half-carry of zero during addition clears it to
zero. If there is a carry from the high nibble during addition, the C flag is set to one, which indi-
cates that the high nibble is incorrect. A $6 must be added to the high nibble to adjust it to the
correct BCD sum.

Fortunately, we don’t need to write instructions to detect the illegal BCD sum following a
BCD addition. The 68HC12 provides a decimal adjust accumulator A instruction, DAA, which
takes care of all these detailed detection and correction operations. The DAA instruction mon-
itors the sums of BCD additions and the C and H flags and automatically adds $6 to any nibble
that requires it. The rules for using the DAA instruction are as follows:

1. The DAA instruction can only be used for BCD addition. It does not work for sub-
traction or hex arithmetic.

2. The DAA instruction must be used immediately after one of the three instruc-
tions that leave their sum in accumulator A. (These three instructions are ADDA,
ADCA, ABA.)

3. The numbers added must be legal BCD numbers to begin with.

Example 2.9
▼

Write an instruction sequence to add the BCD numbers stored at memory locations $800
and $801, and store the sum at $810.

2.5 ■ Writing Programs to do Arithmetic 45

Solution:
ldaa $800 ; load the first BCD number in A
adda $801 ; perform addition
daa ; decimal adjust the sum in A
staa $810 ; save the sum

▲

2.5.6 Multiplication & Division
The 68HC12 provides three multiply and five divide instructions. A brief description of

these instructions appears in Table 2.1.

Mnemonic Function Operation

EMUL unsigned 16 by 16 multiply (D) x (Y) → Y:D

EMULS signed 16 by 16 multiply (D) x (Y) → Y:D

MUL unsigned 8 by 8 multiply (A) x (B) → A:B

EDIV unsigned 32 by 16 divide (Y:D) ÷ (X)
quotient → Y
remainder → D

EDIVS signed 32 by 16 divide (Y:D) ÷ (X)
quotient → Y
remainder → D

FDIV 16 by 16 fractional divide (D) ÷ (X) → X
remainder → D

IDIV unsigned 16 by 16 integer divide (D) ÷ (X) → X
remainder → D

IDIVS signed 16 by 16 integer divide (D) ÷ (X) → X
remainder → D

Table 2.1 • Summary of 68HC12 multiply and divide instructions

The EMUL instruction multiplies the 16-bit unsigned integers stored in accumulator D and
index register Y and leaves the product in these two registers. The upper 16 bits of the product
are in Y whereas the lower 16 bits are in D.

The EMULS instruction multiplies the 16-bit signed integers stored in accumulator D and
index register Y and leaves the product in these two registers. The upper 16 bits of the product
are in Y whereas the lower 16 bits are in D.

The MUL instruction multiplies the 8-bit unsigned integer in accumulator A by the 8-bit
unsigned integer in accumulator B to obtain a 16-bit unsigned result in double accumulator D.
The upper byte of the product is in accumulator A whereas the lower byte of the product is in B.

The EDIV instruction performs an unsigned 32-bit by 16-bit division. The dividend is the
register pair Y and D with Y as the upper 16-bit of the dividend. Index register X is the divisor.
After division, the quotient and the remainder are placed in Y and D, respectively.

The EDIVS instruction performs a signed 32-bit by 16-bit division using the same operands
as the EDIV instruction does. After division, the quotient and the remainder are placed in Y and
D, respectively.

46 Chapter 2 ■ 68HC12 Assembly Programming

The FDIV instruction divides an unsigned 16-bit dividend in double accumulator D by an
unsigned 16-bit divisor in index register X, producing an unsigned 16-bit quotient in X and an
unsigned 16-bit remainder in D. The dividend must be less than the divisor. The radix point
of the quotient is to the left of the bit 15. In the case of overflow (the denominator is less than
or equal to the nominator) or division-by-zero, the quotient is set to $FFFF, and the remain-
der is indeterminate.

The IDIV instruction divides an unsigned 16-bit dividend in double accumulator D by the
unsigned 16-bit divisor in index register X, producing an unsigned 16-bit quotient in X, and
an unsigned 16-bit remainder in D. If both the divisor and the dividend are assumed to have
radix points in the same positions (to the right of bit 0), the radix point of the quotient is to
the right of bit 0. In the case of division by zero, the quotient is set to $FFFF, and the remain-
der is indeterminate.

The IDIVS instruction divides the signed 16-bit dividend in double accumulator D by the
signed 16-bit divisor in index register X, producing a signed 16-bit quotient in X, and a signed
16-bit remainder in D. If division-by-zero is attempted, the values in D and X are not changed,
but the values of the N, Z, and V status bits are undefined.

Example 2.10
▼

Write an instruction sequence to multiply the contents of index register X and double accu-
mulator D, and store the product at memory locations $800~$803.

Solution: There is no instruction to multiply the contents of double accumulator D and index
register X. However, we can transfer the contents of index register X to index register Y and exe-
cute the EMUL instruction. If index register Y holds useful information, then we need to save
it before the data transfer.

sty $810 ; save Y in a temporary location
tfr x,y ; transfer the contents of X to Y
emul ; perform the multiplication
sty $800 ; save the upper 16 bits of the product
std $802 ; save the lower 16 bits of the product
ldy $810 ; restore the value of Y

▲

Example 2.11
▼

Write an instruction sequence to divide the signed 16-bit number stored at memory loca-
tions $805~$806 by the 16-bit unsigned number stored at memory locations $820~$821, and
store the quotient and remainder at $900~$901 and $902~$903, respectively.

Solution: Before we can perform the division, we need to place the dividend and divisor in D and
X, respectively.

ldd $805 ; place the dividend in D
ldx $820 ; place the divisor in X
idivs ; perform the signed division
stx $900 ; save the quotient
std $902 ; save the remainder

Because most arithmetic operations can be performed only on accumulators, we need to
transfer the contents of index register X to D so that further division on the quotient can be per-
formed. The 68HC12 provides two exchange instructions in addition to the TFR instruction for
this purpose:

• The XGDX instruction exchanges the contents of accumulator D and index register X.

• The XGDY instruction exchanges the contents of accumulator D and index register Y.

The 68HC12 provides instructions for performing unsigned 8-bit by 8-bit and both signed
and unsigned 16-bit by 16-bit multiplications. Since the 68HC12 is a 16-bit microcontroller, we
expect that it will be used to perform complicated operations in many sophisticated applica-
tions. Performing 32-bit by 32-bit multiplication will be one of them.

Since there is no 32-bit by 32-bit multiplication instructions, we will have to break a
32-bit number into two 16-bit halves and use the 16-bit by 16-bit multiply instruction to
synthesize the operation. Assume M and N are the multiplicand and the multiplier, respec-
tively. These two numbers can be broken down as follows:

M = MHML

N = NHNL

where, MH and NH are the upper 16 bits and ML and NL are the lower 16 bits of M and N, respec-
tively. Four 16-bit by 16-bit multiplications are performed, and then their partial products are
added together as shown in Figure 2.3.

2.5 ■ Writing Programs to do Arithmetic 47

16-bit

P ~ P+1 P+2 ~ P+3 P+4 ~ P+5 P+6 ~ P+7

upper half

upper half

upper half

upper half lower half

lower half

lower half

lower half

Address

partial product MLNL

partial product MHNL

partial product MLNH

partial product MHNH

Final product M × N

msb lsb

16-bit 16-bit 16-bit

Figure 2.3 • Unsigned 32-bit by 32-bit multiplication

The procedure is as follows:

Step 1
Allocate eight bytes to hold the product. Assume these eight bytes are located at P, P+1,
…, and P+7.

Step 2
Generate the partial product MLNL (in Y:D) and save it at locations P+4 ~ P+7.

Step 3
Generate the partial product MHNH (in Y:D) and save it at locations P ~ P+3.

Step 4
Generate the partial product MHNL (in Y:D) and add it to memory locations P+2 ~ P+5.
The C flag may be set to 1 after this addition.

Step 5
Add the C flag to memory location P+1 using the ADCA (or ADCB) instruction. This
addition may also set the C flag to 1. So, again, add the C flag to memory location P.

Step 6
Generate the partial product MLNH (in Y:D) and add it to memory locations P+2 ~ P+5.
The carry flag may be set to 1. So add the C flag to memory location P+1 and then add it
to memory location P.

▲

Example 2.12
▼

Write a program to multiply the 32-bit unsigned integers stored at M~M+3 and N~N+3,
respectively and store the product at memory locations P~P+7.

Solution: The following program is a direct translation of the previous multiplication algorithm.
org $800

M rmb 4 ; reserved to hold the multiplicand
N rmb 4 ; reserved to hold the multiplier
P rmb 8 ; reserved to hold the product

org $1000
ldd M+2 ; place ML in D
ldy N+2 ; place NL in Y
emul ; compute MLNL
sty P+4 ; save the upper 16 bits of the partial product MLNL
std P+6 ; save the lower 16 bits of the partial product MLNL
ldd M ; place MH in D
ldy N ; place NH in Y
emul ; compute MHNH
sty P ; save the upper 16 bits of the partial product MHNH
std P+2 ; save the lower 16 bits of the partial product MHNH
ldd M ; place MH in D
ldy N+2 ; place NL in Y
emul ; compute MHNL

; the following seven instructions add MHNL to memory locations P+2~P+5
addd P+4 ; add the lower half of MHNL to P+4~P+5
std P+4 ; “
tfr y,d ; transfer Y to D
adcb P+3
stab P+3
adca P+2
staa P+2

; the following six instructions propagate carry to the most significant byte
ldaa P+1
adca #0 ; add C flag to location P+1
staa P+1 ; “
ldaa P
adca #0 ; add C flag to location P
staa P

48 Chapter 2 ■ 68HC12 Assembly Programming

; the following three instructions compute MLNH
ldd M+2 ; place ML in D
ldy N ; place NH in Y
emul ; compute MLNH

; the following seven instructions add MLNH to memory locations P+2~P+5
addd P+4 ; add the lower half of MLNH to P+4~P+5
std P+4 ; “
tfr y,d ; transfer Y to D
adcb P+3
stab P+3
adca P+2
staa P+2

; the following six instructions propagate carry to the most significant byte
ldaa P+1
adca #0 ; add C flag to location P+1
staa P+1
ldaa P
adca #0 ; add C flag to location P
staa P
end

▲

Example 2.13
▼

Write a program to convert the 16-bit binary number stored at $800~$801 to BCD format
and store the result at $900~$904. Convert each BCD digit into its ASCII code and store it in
one byte.

Solution: A binary number can be converted to BCD format using repeated division-by-10. The
largest 16-bit binary number corresponds to the 5-digit decimal number 65535. The first divi-
sion by 10 computes the least significant digit and should be stored in the memory location
$904, the second division-by-10 operation computes the ten’s digit, and so on. The ASCII code
of a BCD digit can be obtained by adding $30 to each BCD digit. The program is as follows:

org $800
data fdb 12345 ; place a number for testing

org $900
result rmb 5 ; reserve five bytes to store the result

org $1000
ldd data ; make a copy of the number to be converted
ldy #result
ldx #10 ; divide the number by 10
idiv ; “
addb #$30 ; convert to ASCII code
stab 4,Y ; save the least significant digit
xgdx ; swap the quotient to D
ldx #10
idiv
addb #$30 ; convert to ASCII code
stab 3,Y ; save the second-to-least-significant digit
xgdx
ldx #10

2.5 ■ Writing Programs to do Arithmetic 49

50 Chapter 2 ■ 68HC12 Assembly Programming

idiv
addb #$30
stab 2,Y ; save the middle digit
xgdx
ldx #10
idiv ; separate the most-significant and second-to-most-

; significant digits
addb #$30
stab 1,Y ; save the second-to-most-significant digit
xgdx ; swap the most significant digit to B
addb #$30 ; convert to ASCII code
stab 0,Y ; save the most significant digit
end

▲

2.6 Program Loops

Many applications require repetitive operations. We can write programs to tell computers to
perform the same operation over and over. A finite loop is a sequence of instructions that will be
executed by the computer for a finite number of times, while an endless loop is a sequence of
instructions that the computer will execute forever.

There are four major loop constructs:
Do statement S forever

This is an endless loop in which statement S is repeated forever. In some applica-
tions, we might add the statement “If C then exit” to leave the infinite loop. An
infinite loop is shown in Figure 2.4.

S

Figure 2.4 • An infinite loop

For i = n1 to n2 do S or For i = n2 to n1 do S
Here, the variable i is the loop counter, which keeps track of the number of
remaining times statement S is to be executed. The loop counter can be incre-
mented (the first case) or decremented (the second case). Statement S is repeated
n2 – n1 + 1 times. The value of n2 is assumed to be no smaller than n1. If there is
concern that the relationship n1 ≤ n2 may not hold, then it must be checked at
the beginning of the loop. Four steps are required to implement a FOR loop:

2.6 ■ Program Loops 51

Step 1
Initialize the loop counter and other variables.

Step 2
Compare the loop counter with the limit to see if it is within bounds. If it is, then
perform the specified operations. Otherwise, exit the loop.

Step 3
Increment (or decrement) the loop counter.

Step 4
Go to step 2.

A For-loop is illustrated in Figure 2.5.

I ← i1

I ≤ i2 ?

S

yes

I ← I + 1

(a) For I = i1 to i2 DO S

no

I ← i2

I ≥ i1 ?

S

yes

I ← I - 1

(b) For I = i2 downto i1 DO S

no

Figure 2.5 • For looping construct

While C Do S
Whenever a While construct is executed, the logical expression C is evaluated
first. If it yields a false value, statement S will not be executed. The action of a
While construct is illustrated in Figure 2.6. Four steps are required to implement a
While loop:

Step 1
Initialize the logical expression C.

Step 2
Evaluate the logical expression C.

Step 3
Perform the specified operations if the logical expression C evaluates to true.
Update the logical expression C and go to step 2. (Note: The logical expression C
may be updated by external conditions or by an interrupt service routine.)

Step 4
Exit the loop.

Repeat S Until C
Statement S is first executed then the logical expression C is evaluated. If C is
false, the next statement will be executed. Otherwise, statement S will be exe-
cuted again. The action of this construct is illustrated in Figure 2.7. Statement
S will be executed at least once. Three steps are required to implement this
construct:

Step 1
Initialize the logical expression C.

Step 2
Execute statement S.

Step 3
Go to Step 2 if the logical expression C evaluates to true. Otherwise, exit.

52 Chapter 2 ■ 68HC12 Assembly Programming

C S
true

false

Figure 2.6 • The While ... Do looping construct

initialize C

S

C
true

false

Figure 2.7 • The Repeat ... Until looping construct

To implement one of the looping constructs, we need to use unconditional branch or one
of the conditional instructions. When executing conditional branch instructions, the 68HC12
checks the condition flags in the CCR register.

2.6.1 Condition Code Register
The contents of the condition code register are shown in Figure 2.8. The shaded characters

are condition flags that reflect the status of an operation. The meanings of these condition flags
are as follows:

S X I

7 6 5 4 3 2 1 0

H N Z V C

Figure 2.8 • Condition code register

• C: the carry flag
Whenever a carry is generated as the result of an operation, this flag will be set to
1. Otherwise, it will be cleared to 0.

• V: the overflow flag
Whenever the result of a two’s complement arithmetic operation is out of range,
this flag will be set to 1. Otherwise, it will be set to 0. The V flag is set to 1 when
the carry from the most significant bit and the second most significant bit differ as
the result of an arithmetic operation.

• Z: the zero flag
Whenever the result of an operation is zero, this flag will be set to 1. Otherwise, it
will be set to 0.

• N: the negative flag
Whenever the most significant bit of the result of an operation is 1, this flag will
be set to 1. Otherwise, it will be set to 0. This flag indicates that the result of an
operation is negative.

• H: the half-carry flag
Whenever there is a carry from the lower four bits to the upper four bits as the
result of an operation, this flag will be set to 1. Otherwise, it will be set to 0.

2.6.2 Branch Instructions
Branch instructions cause program flow to change when specific conditions exist. The

68HC12 has three kinds of branch instructions including short branches, long branches, and
bit-conditional branches.

Branch instructions can also be classified by the type of condition that must be satisfied in
order for a branch to be taken. Some instructions belong to more than one category.

• Unary (unconditional) branch instructions always execute.

• Simple branches are taken when a specific bit in the CCR register is in a specific
state as a result of a previous operation.

• Unsigned branches are taken when a comparison or test of unsigned quantities
results in a specific combination of condition code register bits.

• Signed branches are taken when a comparison or test of signed quantities results
in a specific combination of condition code register bits.

When a short-branch instruction is executed, a signed 8-bit offset is added to the value in
the program counter when a specified condition is met. Program execution continues at the new
address. The numeric range of the short branch offset value is $80 (-128) to $7F (127) from the
address of the instruction immediately following the branch instruction. A summary of the
short branch instructions is shown in Table 2.2.

When a long-branch instruction is executed, a signed 16-bit offset is added to the value in
the program counter when a specified condition is met. Program execution continues at the new
address. Long branch instructions are used when large displacements between decision-making
steps are necessary.

2.6 ■ Program Loops 53

54 Chapter 2 ■ 68HC12 Assembly Programming

Unary Branches

Mnemonic Function Equation or Operation

BRA Branch always 1 = 1

BRN Branch never 1 = 0

Simple Branches

Mnemonic Function Equation or Operation

BCC Branch if carry clear C = 0

BCS Branch if carry set C = 1

BEQ Branch if equal Z = 1

BMI Branch if minus N = 1

BNE Branch if not equal Z = 0

BPL Branch if plus N = 0

BVC Branch if overflow clear V = 0

BVS Branch if overflow set V = 1

Unsigned Branches

Mnemonic Function Equation or Operation

BHI Branch if higher C + Z = 0

BHS Branch if higher or same C = 0

BLO Branch if lower C = 1

BLS Branch if lower or same C + Z = 1

Signed Branches

Mnemonic Function Equation or Operation

BGE Branch if greater than or equal N ⊕ V = 0

BGT Branch if greater than Z + (N ⊕ V) = 0

BLE Branch if less than or equal Z + (N ⊕ V) = 1

BLT Branch if less than N ⊕ V = 1

Table 2.2 • Summary of short branch instructions

The numeric range of long-branch offset values is $8000 (-32768) to $7FFF (32767) from the
instruction immediately after the branch instruction. This permits branching from any location
in the standard 64-KB address map to any other location in the map. A summary of the long-
branch instructions appears in Table 2.3.

Although there are many possibilities in writing a program loop, the following one is a com-
mon format:

loop: .
.
.
Bcc (or LBcc) loop

Where cc is one of the condition codes (CC, CS, EQ, MI, NE, PL, VC, VS, HI, HS, LO, LS, GE,
GT, LS, and LT).

Usually there will be a comparison or arithmetic instruction to set up the condition code
for use by the conditional branch instruction.

2.6 ■ Program Loops 55

Unary Branches

Mnemonic Function Equation or Operation

LBRA Long branch always 1 = 1

LBRN Long branch never 1 = 0

Simple Branches

Mnemonic Function Equation or Operation

LBCC Long branch if carry clear C = 0

LBCS Long branch if carry set C = 1

LBEQ Long branch if equal Z = 1

LBMI Long branch if minus N = 1

LBNE Long branch if not equal Z = 0

LBPL Long branch if plus N = 0

LBVC Long branch if overflow is clear V = 0

LBVS Long branch if overflow set V = 1

Unsigned Branches

Mnemonic Function Equation or Operation

LBHI Long branch if higher C + Z = 0

LBHS Long branch if higher or same C = 0

LBLO Long branch if lower C = 1

LBLS Long branch if lower or same C + Z = 1

Signed Branches

Mnemonic Function Equation or Operation

LBGE Long branch if greater than or equal N ⊕ V = 0

LBGT Long branch if greater than Z + (N ⊕ V) = 0

LBLE Long branch if less than or equal Z + (N ⊕ V) = 1

LBLT Long branch if less than N ⊕ V = 1

Table 2.3 • Summary of long branch instructions

2.6.3 Compare & Test Instructions
The 68HC12 has a set of compare instructions that are dedicated to the setting of condition

flags. The compare and test instructions perform subtraction between a pair of registers or
between a register and a memory location. The result is not stored, but condition codes are set
by the operation. In the 68HC12, most instructions update condition code flags automatically,
so it is often unnecessary to include a separate test or compare instruction. Table 2.4 is a sum-
mary of compare and test instructions.

56 Chapter 2 ■ 68HC12 Assembly Programming

Compare instructions

Mnemonic Function Operation

CBA Compare A to B (A) - (B)

CMPA Compare A to memory (A) - (M)

CMPB Compare B to memory (B) - (M)

CPD Compare D to memory (D) - (M:M+1)

CPS Compare SP to memory (SP) - (M:M+1)

CPX Compare X to memory (X) - (M:M+1)

CPY Compare Y to memory (Y) - (M:M+1)

Test instructions

Mnemonic Function Operation

TST Test memory for zero or minus (M) - $00

TSTA Test A for zero or minus (A) - $00

TSTB Test B for zero or minus (B) - $00

Table 2.4 • Summary of compare and test instructions

2.6.4 Loop Primitive Instructions
A lot of the program loops are implemented by incrementing or decrementing a loop count.

The branch is taken when either the loop count is equal to zero or not equal to zero depending
on the applications. The 68HC12 provides a set of loop primitive instructions for implement-
ing this type of looping mechanism. These instructions test a counter value in a register or accu-
mulator (A, B, D, X, Y, or SP) for zero or nonzero values as a branch condition. There are
predecrement, preincrement, and test-only versions of these instructions.

The range of the branch is from $80 (-128) to $7F (127) from the instruction immediately
following the loop primitive instruction. Table 2.5 shows a summary of the loop primitive
instructions.

Example 2.14
▼

Write a program to add an array of N 8-bit numbers and store the sum at memory location
$800~$801. Use the For i = n1 to n2 do looping construct.

Solution: We will use variable i as the array index. This variable can also be used to keep track
of the number of iterations remained to be performed. We will use a two-byte variable sum to
hold the sum of array elements. The logic flow of the program is illustrated in Figure 2.9.

2.6 ■ Program Loops 57

Mnemonic Function Equation or Operation

DBEQ cntr, rel Decrement counter and branch if = 0 counter ← (counter) - 1
(counter = A, B, D, X, Y, or SP) If (counter) = 0, then branch

else continue to next instruction

DBNE cntr, rel Decrement counter and branch if ≠ 0 counter ← (counter) - 1
(counter = A, B, D, X, Y, or SP) If (counter) ≠ 0, then branch

else continue to next instruction

IBEQ cntr, rel Increment counter and branch if = 0 counter ← (counter) + 1
(counter = A, B, D, X, Y, or SP) If (counter) = 0, then branch

else continue to next instruction

IBNE cntr, rel Increment counter and branch if ≠ 0 counter ← (counter) + 1
(counter = A, B, D, X, Y, or SP) If (counter) ≠ 0, then branch

else continue to next instruction

TBEQ cntr, rel Test counter and branch if = 0 If (counter) = 0, then branch
(counter = A, B, D, X, Y, or SP) else continue to next instruction

TBNE cntr, rel Test counter and branch if ≠ 0 If (counter) ≠ 0, then branch
(counter = A, B, D, X, Y, or SP) else continue to next instruction

Note. 1. cntr is the loop counter and can be accumulator A, B, or D and register X, Y, or SP.
2. rel is the relative branch offset and is usually a label

Table 2.5 • Summary of loop primitive instructions

Start

i ← 0
sum ← 0

i = N?

no

sum ← sum + array[i]

i ← i + 1

Stop
yes

Figure 2.9 • Logic flow of example 2.14

The program is a direct translation of the flowchart shown in Figure 2.9.
N equ 20 ; array count

org $800 ; starting address of on-chip SRAM
sum rmb 2 ; array sum
i rmb 1 ; array index

org $1000 ; starting address of the program
ldaa #0
staa i ; initialize loop (array) index to 0
staa sum ; initialize sum to 0
staa sum+1 ; “

loop ldab i
cmpb #N ; is i = N?
beq done ; if done, then branch
ldx #array ; use index register X as a pointer to the array
abx ; compute the address of array[i]
ldab 0,x ; place array[i] in B
dy sum ; place sum in Y
aby ; compute sum <- sum + array[i]
sty sum ; update sum
inc i ; increment the loop count by 1
bra loop

done swi ; return to D-Bug12 monitor
; the array is defined in the following statement
array db 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20

end

It is a common mistake for an assembly language programmer to forget to update the vari-
able in memory. For example, we will not get the correct value for sum if we did not add the
instruction sty sum in the program shown in Example 2.14.

Loop primitive instructions are especially suitable for implementing the repeat S until C
looping construct as demonstrated in the following example.

Example 2.15
▼

Write a program to find the maximum element from an array of N 8-bit elements using the
repeat S until C looping construct.

Solution: We will use the variable i as the array index and also as the loop count. The variable
max_val will be used to hold the array maximum. The logic flow of the program is shown in
Figure 2.10.

58 Chapter 2 ■ 68HC12 Assembly Programming

The program is as follows:
N equ 20 ; array count

org $800 ; starting address of on-chip SRAM
max_val rmb 1 ; memory location to hold array max

org $1000 ; starting address of program
ldaa array ; set array[0] as the temporary array max
staa max_val ; “
ldx #array+N-1 ; start from the end of the array
ldab #N-1 ; use B to hold variable i and initialize it to N-1

loop ldaa max_val
cmpa 0,x ; compare max_val with array[i]
bge chk_end ; no update if max_val is larger
ldaa 0,x ; update max_val
staa max_val ; “

chk_end dex ; move the array pointer
dbne b,loop ; decrement the loop count, branch if not zero yet.

forever bra forever
array db 1,3,5,6,19,41,53,28,13,42,76,14,20,54,64,74,29,33,41,45

end

▲

2.6.5 Decrementing & Incrementing Instructions
We often need to add or subtract one from a variable in our program. Although we can use

one of the ADD or SUB instructions to achieve this, it would be more efficient to use a single
instruction. The 68HC12 has a few instructions for us to increment or decrement a variable by
one. A summary of decrement and increment instructions is listed in Table 2.6.

2.6 ■ Program Loops 59

Start

max_val ← array[0]
i ← N-1

max_val < array[i] ?

max_val ← array[i]

yes

no

i ← i - 1

i = 0?

Stop

yes

no

Figure 2.10 • Logic flow of example 2.15

Example 2.16
▼

Use an appropriate increment or decrement instruction to replace the following instruction
sequence:

ldaa i
adda #1
staa i

Solution: The above three instructions can be replaced by the following instruction:
inc I

▲

2.6.6 Bit Condition Branch Instructions
In certain applications, we need to make branch decisions based on the value of a few bits.

The 68HC12 provides two special conditional branch instructions for this purpose. The syntax
of the first special conditional branch instruction is:

[<label>] BRCLR opr, msk, rel

where:

opr specifies the memory location to be checked and can be specified using
direct, extended, and all indexed addressing modes.

60 Chapter 2 ■ 68HC12 Assembly Programming

Decrement instructions

Mnemonic Function Operation

DEC Decrement memory by 1 M ← (M) - $01

DECA Decrement A by 1 A ← (A) - $01

DECB Decrement B by 1 B ← (B) - $01

DES Decrement SP by 1 SP ← (SP) - $01

DEX Decrement X by 1 X ← (X) - $01

DEY Decrement Y by 1 Y ← (Y) - $01

Increment instructions

Mnemonic Function Operation

INC Increment memory by 1 M ← (M) + $01

INCA Increment A by 1 A ← (A) + $01

INCB Increment B by 1 B ← (B) + $01

INS Increment SP by 1 SP ← (SP) + $01

INX Increment X by 1 X ← (X) + $01

INY Increment Y by 1 Y ← (Y) + $01

Table 2.6 • Summary of compare and test instructions

msk is an 8-bit mask that specifies the bits of the memory location to be
checked. The bits to be checked correspond to those bit positions that are
ones in the mask.

rel is the branch offset and is specified in 8-bit relative mode.

This instruction tells the 68HC12 to perform bitwise logical AND on the contents of the
specified memory location and the mask supplied with the instruction, then branch if the result
is zero.

For example, for the instruction sequence:
here brclr $66,$80,here

ldd $70

the 68HC12 will continue to execute the first instruction if the most significant bit of the mem-
ory location at $66 is 0. Otherwise, the next instruction will be executed.

The syntax of the second special conditional branch instruction is:
[<label>] BRSET opr, msk, rel

where:

opr specifies the memory location to be checked and can be specified using
direct, extended, and all indexed addressing modes.

msk is an 8-bit mask that specifies the bits of the memory location to be
checked. The bits to be checked correspond to those bit positions that are
ones in the mask

rel is the branch offset and is specified in 8-bit relative mode

This instruction tells the 68HC12 to perform the logical AND of the contents of the spec-
ified memory location inverted and the mask supplied with the instruction, then branch if the
result is zero (this occurs only when all bits corresponding to ones in the mask byte are ones in
the tested byte).

For example, for the following instruction sequence:
loop inc count

…
brset $66,$e0,loop
…

the branch will be taken if the most significant three bits of the memory location at $66 are
all ones.

Example 2.17
▼

Write a program to count the number of elements that are divisible by 4 in an array of N 8-bit
numbers. Use the repeat S until C looping construct.

Solution: The lowest two bits of a number divisible by four are 00. By checking the lowest two
bits of a number, we can determine if a number is divisible by four. The program is as follows:

N equ 20
org $800

total rmb 1
org $1000 ; starting address of the program
ldaa #0
staa total ; initialize total to 0

2.6 ■ Program Loops 61

ldx #array ; use index register X as the array pointer
ldab #N ; use accumulator B as the loop count

loop brclr 0,x,$03,yes
bra chkend

yes inc total ; add 1 to the total
chkend inx ; move the array pointer

dbne b,loop
forever bra forever
array db 2,3,4,8,12,13,19,24,33,32,20,18,53,52,80,82,90,94,100,102

end

2.6.7 Instructions for Variable Initialization
We often need to initialize a variable to zero when writing a program. The 68HC12 has

three instructions for this purpose. They are:
[<label>] clr opr

where opr is a memory location specified using the extended mode and all indexed addressing
(direct and indirect) modes. The memory location is initialized to zero by this instruction.

[<label>] clra

Accumulator A is cleared to 0 by this instruction.
[<label>] clrb

Accumulator B is cleared to 0 by this instruction.

2.7 Shift & Rotate Instructions

Shift and rotate instructions are useful for bit field manipulation. They can be used to speed
up the integer multiply and divide operations if one of the operands is a power of two. A
shift/rotate instruction shifts/rotates the operand by one bit. The 68HC12 has shift instructions
that can operate on accumulators A, B, and D, or on a memory location. A memory operand
must be specified using the extended or indexed (direct or indirect) addressing modes. A sum-
mary of shift and rotate instructions is shown in Table 2.7.

62 Chapter 2 ■ 68HC12 Assembly Programming

2.7 ■ Shift & Rotate Instuctions 63

Logical shift instructions

Mnemonic Function Operation

LSL <opr> Logical shift left memory

LSLA Logical shift left A

LSLB Logical shift left B

LSLD Logical shift left D

LSR <opr> Logical shift right memory

LSRA Logical shift right A

LSRB Logical shift right B

LSRD Logical shift right D

Arithmetic shift instructions

Mnemonic Function Operation

ASL <opr> Arithmetic shift left memory

ASLA Arithmetic shift left A

ASLB Arithmetic shift left B

ASLD Arithmetic shift left D

ASR <opr> Arithmetic shift right memory

ASRA Arithmetic shift right A

ASRB Arithmetic shift right B

Rotate instructions

Mnemonic Function Operation

ROL <opr> Rotate left memory thru carry

ROLA Rotate left A through carry

ROLB Rotate left B through carry

ROR <opr> Rotate right memory thru carry

RORA Rotate right A through carry

RORB Rotate right B through carry

Table 2.7 • Summary of shift and rotate instructions

Example 2.18
▼

What are the values of accumulator A and the C flag after executing the ASLA instruction?
Assume that originally A contains $95 and the C flag is 1.

Solution: The operation of this instruction is shown in Figure 2.11a.

64 Chapter 2 ■ 68HC12 Assembly Programming

01 1 110 0 00

1 1 1 10 0 0 0 0

C flag

accumulator A

Figure 2.11a • Operation of the ASLA instruction

The result is shown in Figure 2.11b.

Original value New value

[A] = 10010101
C = 1

[A] = 00101010
C = 1

Figure 2.11b • Execution result of the ASLA instruction

▲

Example 2.19
▼

What are the new values of the memory location at $800 and the C flag after
executing the instruction ASR $800? Assume that the memory location $800
originally contains the value of $ED and the C flag is 0.

Solution: The operation of this instruction is shown in Figure 2.12a.

1 0 111 1 01

11 0 11 1 1 1 0

memory location
$800

C flag

Figure 2.12a • Operation of the ASR $800 instruction

The result is shown in Figure 2.12b.

Original value New value

[$800] = 11101101
C = 0

[$800] = 11110110
C = 1

Figure 2.12b • Result of the ASR $800 instruction

▲

Example 2.20
▼

What are the new values of the memory location at $800 and the C flag after executing the
instruction LSR $800? Assume the memory location $800 originally contains $E7 and the C
flag is 1.

Solution: The operation of this instruction is illustrated in Figure 2.13a.

2.7 ■ Shift & Rotate Instuctions 65

1 0 111 1 10

11 0 10 1 1 0 10

memory location
$800

C flag

Figure 2.13a • Operation of the LSR $800 instruction

The result is shown in Figure 2.13b.

Original value New value

[$800] = 11100111
C = 1

[$800] = 01110011
C = 1

Figure 2.13b • Execution result of LSR $800

▲

Example 2.21
▼

Compute the new values of accumulator B and the C flag after executing the instruction
ROLB. Assume the original value of B is $BD and C flag is 1.

Solution: The operation of this instruction is illustrated in Figure 2.14a.

1 1 1 1 1 0 10

0 01 1 1 1 1 1 1

1

accumulator B

C flag

Figure 2.14a • Operation of the instruction ROLB

The result is shown in Figure 2.14b.

Original value New value

[B] = 10111101
C = 1

[B] = 01111011
C = 1

Figure 2.14b • Execution result of ROLB

▲

Example 2.22
▼

What are the values of accumulator A and the C flag after executing the instruction RORA?
Assume the original value of A is $BE and C = 1.

Solution: The operation of this instruction is illustrated in Figure 2.15a.

66 Chapter 2 ■ 68HC12 Assembly Programming

1 1 0 1 1 1 1 1 0

0 1 1 1 1 1 1 10 accumulator A

C flag

Figure 2.15a • Operation of the instruction RORA

The result is shown in Figure 2.15b.:

Original value New value

[A] = 10111110
C = 1

[A] = 11011111
C = 0

Figure 2.15b • Execution result of RORA

▲

Example 2.23
▼

Write a program to count the number of zeros contained in memory locations $800~$801
and save the result at memory location $805.

Solution: The logical shift right instruction is available for double accumulator D. We can load
this 16-bit value into D and shift it to the right sixteen times or until it becomes zero. The algo-
rithm of this program is as follows:

Step 1
Initialize the loop count to 16 and the zero count to 0.

Step 2
Place the 16-bit value in D.

Step 3
Shift D to the right one place.

Step 4
If the C flag is 0, increment zero count by 1.
Step 5
Decrement loop count by 1.

Step 6
If loop count is zero, then stop. Otherwise, go to step 3.

The program is as follows:
org $800
db $23,$55
org $805

zero_cnt rmb 1
lp_cnt rmb 1

org $1000
clr zero_cnt ; initialize the zero count to 0
ldaa #16
staa lp_cnt ; initialize loop count to 16
ldd $800 ; place the 16-bit number in D

again lsrd
bcs chk_end ; branch if the lsb is a 1
inc zero_cnt

chk_end dec lp_cnt
bne again ; have we tested all 16 bits yet?

forever bra forever
end

Sometimes we need to shift a number larger than 16 bits. However, the 68HC12 does not
have an instruction that does this. Suppose the number has k bytes and the most significant
byte is located at loc. The remaining k –1 bytes are located at loc+1, loc+2, …, loc+k-1, as shown
in Figure 2.16.

2.7 ■ Shift & Rotate Instuctions 67

msb lsb...
loc loc+1 loc+k-1

Figure 2.16 • k bytes to be shifted

The logical shift-one-bit-to-the-right operation is shown in Figure 2.17.
loc loc+1 loc+k-1

0

msb lsb

Figure 2.17 • Shift-one-to-the-right operation

As shown in Figure 2.17:

• The bit seven of each byte will receive the bit zero of the byte on its immediate
left with the exception of the most significant byte, which will receive a zero.

• Each byte will be shifted to the right by one bit. The bit zero of the least signifi-
cant byte will be shifted out and lost.

The operation can therefore be implemented as follows:

Step 1
Shift the byte at loc to the right one place (using the LSR <opr> instruction).

Step 2
Rotate the byte at loc+1 to the right one place (using the ROR <opr> instruction).

Step 3
Repeat step 2 for the remaining bytes.

By repeating this procedure, the given k-byte number can be shifted to the right as many
bits as desired. The operation to shift a multi-byte number to the left should start from the least
significant byte and rotate the remaining bytes toward the most significant byte.

▲

Example 2.24
▼

Write a program to shift the 32-bit number stored at $800~$803 to the right four places.

Solution: The most significant to the least significant bytes are stored at $800~$803. The fol-
lowing instruction sequence implements the algorithm that we just described:

ldab #4 ; set up the loop count
ldx #$800

again lsr 0,x
ror 1,x
ror 2,x
ror 3,x
dbne b,again

▲

2.8 Boolean Logic Instructions

When dealing with input and output port pins, we often need to change the values of a few
bits. For these types of applications, Boolean logic instructions come in handy. A summary of
the 68HC12 Boolean logic instructions is described in Table 2.8.

68 Chapter 2 ■ 68HC12 Assembly Programming

Mnemonic Function Operation

ANDA <opr> AND A with memory A ← (A) • (M)
ANDB <opr> AND B with memory B ← (B) • (M)
ANDCC <opr> AND CCR with memory (clear CCR bits) CCR ← (CCR) • (M)
EORA <opr> Exclusive OR A with memroy A ← (A) ⊕ (M)
EORB <opr> Exclusive OR B with memory B ← (B) ⊕ (M)
ORAA <opr> OR A with memory A ← (A) + (M)
ORAB <opr> OR B with memory B ← (B) + (M)
ORCC <opr> OR CCR with memory CCR ← (CCR) + (M)
CLC Clear C bit in CCR C ← 0
CLI Clear I bit in CCR I ← 0
CLV Clear V bit in CCR V ← 0
COM <opr> One’s complement memory M ← $FF - (M)
COMA One’s complement A A ← $FF - (A)
COMB One’s complement B B ← $FF - (B)
NEG <opr> Two’s complement memory M ← $00 - (M)
NEGA Two’s complement A A ← $00 - (A)
NEGB Two’s complement B B ← $00 - (B)

Table 2.8 • Summary of Boolean logic instructions

The operand opr can be specified using all except the relative addressing modes. Usually,
one would use the AND instruction to clear one or a few bits and use the OR instruction to set
one or a few bits. The exclusive OR instruction can be used to toggle (change from 0 to 1 and
from 1 to 0) one or a few bits.

For example, the instruction sequence:
ldaa $56
anda #$0F
staa $56

clears the upper four pins of the I/O port located at $56.
The instruction sequence:

ldaa $56
oraa #$01
staa $56

sets the bit 0 of the I/O port at $56.
The instructions sequence:

ldaa $56
eora #$0F
staa $56

toggles the lower four bits of the I/O port at $56. The instructions (COMA and COMB) that per-
form one’s complementing can be used if all of the port pins need to be toggled.

2.9 Bit Test & Manipulate Instruction

These instructions use a mask value to test or change the value of individual bits in an
accumulator or in a memory location. BITA and BITB provide a convenient means of testing bits
without altering the value of either operand. Table 2.9 shows a summary of bit test and manip-
ulation instructions.

2.9 ■ Bit Test & Manipulate Instruction 69

Mnemonic Function Operation

BCLR <opr>2, msk8 Clear bits in memory M ← (M) • (mm)

BITA <opr>1 Bit test A (A) • (M)

BITB <opr>1 Bit test B (B) • (M)

BSET <opr>2, msk8 Set bits in memory M ← (M) + (mm)

Note. 1. <opr> can be specified using all except relative addressing modes for BITA and BITB.
2. <opr> can be specified using direct, extended, and indexed (exclude indiriect)

addressing modes.
3. msk8 is an 8-bit value.

Table 2.9 • Summary of Boolean logic instructions

For example, the instruction:
bclr 0,x,$81

clears the most significant and least significant bits of the memory location pointed to by index
register X.

The instruction:
bita #$44

tests the bit six and bit two of accumulator A and updates Z and N flags of CCR register accord-
ingly. The V flag in CCR register is cleared.

The instruction:
bitb #$22

tests the bit five and bit one of accumulator B and updates the Z and N flags of CCR register
accordingly. The V flag in CCR register is cleared.

Finally, the instruction:
bset 0,y,$33

sets the bits five, four, one, and zero of the memory location pointed to by index register Y.

2.10 Program Execution Time

The 68HC12 uses the ECLK (we will call it E clock from now on) signal as a timing refer-
ence. The frequency of the E clock is equal to one-half of the frequency of the crystal oscillator
out of reset. The execution times of instructions are also measured in E cycles.

There are many applications that require the generation of time delays. Program loops are
often used to create some amount of delay unless the time delay needs to be very accurate.

The creation of a time delay involves two steps:

1. Select a sequence of instructions that takes a certain amount of time to execute.

2. Repeat the instruction sequence for the appropriate number of times.

For example, the following instruction sequence takes 40 E clock cycles to execute:
loop psha ; 2 E cycles

pula ; 3 E cycles
psha
pula
psha
pula
psha
pula
psha
pula
psha
pula
psha
pula
nop ; 1 E cycle
nop ; 1 E cycle
dbne x,loop ; 3 E cycles

If the 68HC12 runs under the control of a 16-MHz crystal oscillator, then the frequency and
the period of the E clock signal are 8 MHz and 125 ns, respectively. The above instruction
sequence will take 5 µs to execute.

70 Chapter 2 ■ 68HC12 Assembly Programming

Example 2.25
▼

Write an instruction sequence to create a 100-ms time delay.

Solution: In order to create a 100-ms time delay, we need to repeat the above instruction
sequence 20,000 times (100 ms ÷ 5 µs = 20,000). The following instruction sequence will create
the desired delay:

ldx #20000 ; 2 E cycles
loop psha ; 2 E cycles

pula ; 3 E cycles
psha ; 2 E cycles
pula ; 3 E cycles
psha ; 2 E cycles
pula ; 3 E cycles
psha ; 2 E cycles
pula ; 3 E cycles
psha ; 2 E cycles
pula ; 3 E cycles
psha ; 2 E cycles
pula ; 3 E cycles
psha ; 2 E cycles
pula ; 3 E cycles
nop ; 1 E cycle
nop ; 1 E cycle
dbne x,loop ; 3 E cycles

▲

Example 2.26
▼

Write an instruction sequence to create a delay of 10 seconds.

Solution: The instruction sequence in Example 2.25 can create no more than 327 ms delay. In
order to create a longer time delay, we need to use a two-layer loop. For example, the following
instruction sequence will create a 10-second delay:

ldab #100 ; 1 E cycle
out_loop ldx #20000 ; 2 E cycles
inner_loop psha

pula
psha
pula
psha
pula
psha
pula
psha
pula
psha
pula
psha
pula

2.10 ■ Program Execution Time 71

psha
pula
psha
pula
nop
nop
dbne x,inner_loop
dbne b,out_loop ; 3 E cycles

The time delay created by using program loops is not accurate. Some overhead is required
to set up the loop count. For example, the one-layer loop has a 2-E-cycle overhead while the
two-layer loop has much more overhead:

overhead = 1 E cycle (caused by the ldab #100 instruction)
+ 100 x 2 E cycles (caused by the out_loop ldx #20000 instruction)
+ 100 x 3 E cycles (caused by the dbne b,out_loop instruction)

= 501 E cycles = 62.625 µs (at 8 MHz E clock)

This overhead can be reduced by placing a larger value in index register X and a smaller
value in accumulator B. For example, by placing 50,000 in X and 40 in B, the overhead can be
reduced to 25.125 µs. If higher accuracy is required then you should use one of the timer func-
tions to create the desired time delay.

▲

2.11 Summary

An assembly language program consists of three major parts: assembler directives, assem-
bly language instructions, and comments. A statement of an assembly language program con-
sists of four fields: label, operation code, operand, and comment. Assembly directives
supported by the freeware as12 are all discussed in this chapter.

The 68HC12 instructions are explained category by category. Simple program examples are
used to demonstrate the applications of different instructions. The 68HC12 is a 16-bit micro-
controller. Therefore, it can perform 16-bit arithmetic. Numbers greater than 16 bits must be
manipulated using multiprecision arithmetic.

Microcontrollers are designed to perform repetitive operations. Repetitive operations are
implemented by program loops. There are two types of program loops: infinite loop and finite
loop. There are four major variants of the looping constructs:

• Do statement S forever

• For i = n1 to n2 do S or For i = n2 downto n1 do S

• While C do S

• Repeat S until C

In general, the implementation of program loops requires:

• the initialization of a loop counter (or condition)

• performing the specified operation

• comparing the loop count with the loop limit (or evaluating the condition)

• making a decision regarding whether the program loop should be continued

The 68HC12 provides instructions to support the initialization of a loop counter, decre-
menting (or incrementing) the loop counter, and deciding whether looping should be continued.

72 Chapter 2 ■ 68HC12 Assembly Programming

The shifting and rotating instructions are useful for bit field operations. Integer multiplica-
tion by a power of two and division by a power of two can be sped up by using the shifting
instructions.

The 68HC12 also provides many Boolean logical instructions that can be very useful for set-
ting, clearing, and toggling the I/O port pins.

2.12 Exercises

E2.1 Find the valid and invalid labels in the following statements, and explain why the invalid
labels are invalid.

column 1

a. ABC decb
b. lp+: adda #1
c. too: mul
d. not_true nega
e. star+= ldaa #10
f. too_big dec count

E2.2 Identify the four fields of the following instructions:

a. bne not_done
b. loop brclr 0,x,$01,loop ; wait until the least significant bit is set
c. here: dec lp_cnt ; decrement the variable lp_cnt

E2.3 Write a sequence of assembler directives to reserve 10 bytes starting from $800.
E2.4 Write a sequence of assembler directives to build a table of ASCII codes of lower-case let-
ters a-z. The table should start from memory location $2000.
E2.5 Write a sequence of assembler directives to store the message “welcome to the robot
demonstration!” starting from the memory location at $1050.
E2.6 Write an instruction sequence to add the two 24-bit numbers stored at $810~$812 and
$813~$815, and save the sum at $900~902.
E2.7 Write an instruction sequence to subtract the 6-byte number stored at $800~$805 from the
6-byte number stored at $810~$805, and save the result at $900~$905.
E2.8 Write a sequence of instructions to add the BCD numbers stored at $800 and $801 and store
the sum at $803.
E2.9 Write an instruction sequence to add the 4-digit BCD numbers stored at $800~$801 and
$802~$803, and store the sum at $900~901.
E2.10 Write a program to compute the average of an array of N 8-bit numbers and store the result
at $900. The array is stored at memory locations starting from $800. N is no larger than 255.
E2.11 Write a program to multiply two 3-byte numbers that are stored at $800~$802 and
$803~$805, and save the product at $900~$905.
E2.12 Write a program to compute the average of the square of all elements of an array with
thirty-two 8-bit unsigned numbers. The array is stored at $800~$81F. Store the result at
$900~$901.
E2.13 Write a program to count the number of even elements of an array of N 16-bit elements.
The array is stored at memory locations starting from $900.

2.11 ■ Exercises 73

E2.14 Write an instruction sequence to shift the 32-bit number to the left four places. The 32-bit
number is located at $800~$803.
E2.15 Write a program to count the number of elements in an array that are smaller than 16. The
array is stored at memory locations starting from $800. The array has N 8-bit unsigned elements.
E2.16 Write an instruction sequence to swap the upper four bits and the lower four bits of accu-
mulator A (swap bit seven with bit three, bit six with bit two, and so on).
E2.17 Write a program to count the number of elements in an array whose bits three, four, and
seven are zeroes. The array has N 8-bit elements and is stored in memory locations starting
from $800.
E2.18 Write an instruction sequence to set bits three, two, one, and zero to one and clear the
upper four bits.
E2.19 Find the values of condition flags N, Z, V, and C in the CCR register after the execution of
each of the following instructions, given that [A] = $50 and the condition flags are N = 0, Z = 1,
V = 0, and C = 1.

(a) SUBA #40 (b) TESTA (c) ADDA #$50
(d) LSRA (e) ROLA (f) LSLA

E2.20 Find the values of condition flags N, Z, V, and C in the CCR register after executing each
of the following instructions independently, given that [A] = $00 and the initial condition codes
are N = 0, C = 0, Z = 1, and V = 0.

(a) TSTA (b) ADDA #$40 (c) SUBA #$78
(d) LSLA (e) ROLA (f) ADDA #$CF

E2.21 Write an instruction sequence to toggle the odd number bits and clear the even number
bits of the memory location at $66.
E2.22 Write a program to shift the 8-byte number located at $800-$807 to the left four places.
E2.23 Write a program to shift the 6-byte number located at $900-$905 to the right three places.
E2.24 Write a program to create a time delay of 100 seconds by using program loops.
E2.25 Write a program to create a time delay of five seconds using program loops.

74 Chapter 2 ■ 68HC12 Assembly Programming

