

Order this document by:

AN1284/D

© MOTOROLA INC, 1996

SEMICONDUCTOR

MOTOROLA

APPLICATION NOTE

Transporting M68HC11 Code to M68HC12 Devices

By James M. Sibigtroth

1 INTRODUCTION

In general, the CPU12 is a proper superset of the M68HC11 CPU. Significant changes have been made to
improve the efficiency and capabilities of the CPU without sacrificing compatibility with the popular
M68HC11 family. This note provides information that will allow the large number of programmers familiar
with the M68HC11 to evaluate moving from an M68HC11 system to an M68HC12 system. For more detailed

information, please refer to the

CPU12 Reference Manual,

 Motorola Publication Number CPU12RM/AD.
The manual is available on the Freeware Data Systems website: http://www.freeware.aus.sps.mot.com/.

1.1 CPU12 Design Goals

The primary goals of the CPU12 design were:

•

ABSOLUTE

 source code compatibility with the M68HC11

• Same programming model

• Same stacking operations

• Upgrade to 16-bit architecture

• Eliminate extra byte/extra cycle penalty for using index register Y

• Improve performance

• Improve compatibility with high level languages

2 SOURCE CODE COMPATIBILITY

Every M68HC11 instruction mnemonic and source code statement can be assembled directly with a CPU12
assembler with no modifications. CPU12 instructions affect condition code bits in the same way as
M68HC11 instructions. The CPU12 supports all M68HC11 addressing modes and several new variations
of indexed addressing mode.

CPU12 object code is similar to but not identical to M68HC11 object code. Some primary objectives, such
as the elimination of the penalty for using Y, could not be achieved without object code differences. While
the object code has been changed, the majority of the opcodes are identical to those of the M6800, which
was developed more than 20 years earlier.

The CPU12 assembler automatically translates a few M68HC11 instruction mnemonics into functionally
equivalent CPU12 instructions. For example, the CPU12 does not have an increment stack pointer (INS)
instruction, so the INS mnemonic is translated to LEAS 1,S. The CPU12 does provide single-byte DEX,
DEY, INX, and INY instructions because the LEAX and LEAY instructions do not affect the condition codes,
while the M68HC11 instructions update the Z bit to according to the result of the operation.

MOTOROLA AN1284/D
2

Table 1

 shows M68HC11 instruction mnemonics that are automatically translated into equivalent CPU12
instructions. The translation is performed by the assembler so there is no need to modify old M68HC11 code
in order to assemble it for the CPU12. In fact, M68HC11 mnemonics can be used in new CPU12 programs.

All of the translations produce the same amount of or slightly more object code than the original M68HC11
instructions. However, there are offsetting savings in other instructions. Y-indexed instructions in particular
assemble into one byte less object code than the same M68HC11 instruction.

The CPU12 has a two-page opcode map, rather than the four-page M68HC11 map. This is largely due to
redesign of the indexed addressing modes. Most of pages 2, 3, and 4 of the M68HC11 opcode map are
required because Y-indexed instructions use different opcodes than X-indexed instructions.

Approximately two-thirds of the M68HC11 page 1 opcodes are unchanged in the CPU12. Some opcodes
that are on other pages of the M68HC11 opcode map have been moved to page 1 of the CPU12 map.
CPU12 object code for each of these instructions is one byte smaller than object code for the equivalent
M68HC11 instruction.

Table 2

shows these instructions.

Instruction set changes offset each other to a certain extent. Programming style also affects the rate at
which instructions appear. As a test, the BUFFALO monitor, an 8-Kbyte M68HC11 assembly code program,
was reassembled for the CPU12. The resulting object code is six bytes smaller than the M68HC11 code. It
is fair to conclude that M68HC11 code can be reassembled with very little change in size.

The relative size of M68HC11 and CPU12 code has also been tested by rewriting several smaller assembly
programs from scratch. In these cases, the CPU12 code is typically about 30% smaller. These savings are
mostly due to improved indexed addressing.

It is useful to compare the relative sizes of C programs. A C program compiled for the CPU12 is about 30%
smaller than the same program compiled for the M68HC11. The difference is largely attributable to better
indexing.

Table 1 Translated M68HC11 Mnemonics

M68HC11
Mnemonic

Equivalent
CPU12 Instruction

Comments

ABX
ABY

LEAX B,X
LEAY B,Y

Since CPU12 has accumulator offset indexing, ABX and ABY are rarely
used in new CPU12 programs. ABX was one byte on M68HC11 but ABY
was two bytes. The LEA substitutes are two bytes.

CLC
CLI
CLV
SEC
SEI
SEV

ANDCC #$FE
ANDCC #$EF
ANDCC #$FD
ORCC #$01
ORCC #$10
ORCC #$02

ANDCC and ORCC now allow more control over the CCR, including the
ability to set or clear multiple bits in a single instruction. These instruc-
tions took one byte each on M68HC11 while the ANDCC and ORCC
equivalents take two bytes each.

DES
INS

LEAS –1,S
LEAS 1,S

Unlike DEX and INX, DES and INS did not affect CCR bits in the
M68HC11, so the LEAS equivalents in CPU12 duplicate the function of
DES and INS. These instructions were one byte on M68HC11 and two
bytes on CPU12.

TAP
TPA
TSX
TSY
TXS
TYS

XGDX
XGDY

TFR A,CCR
TFR CCR,A

TFR S,X
TFR S,Y
TFR X,S
TFR Y,S
EXG D,X
EXG D,Y

The M68HC11 had a small collection of specific transfer and exchange
instructions. CPU12 expanded this to allow transfer or exchange be-
tween any two CPU registers. For all but TSY and TYS (which take two
bytes on either CPU), the CPU12 transfer/exchange costs one extra byte
compared to M68HC1. The substitute instructions execute in one cycle
rather than two.

AN1284/D MOTOROLA
3

3 PROGRAMMER’S MODEL AND STACKING

The CPU12 programming model (

Figure 1

) is identical to that of the M68HC11.

Figure 1 CPU12 Programming Model

Both the M68HC11 and the CPU12 stack nine bytes of system resources when an interrupt occurs. The
stacking order is identical. However, since this is an odd number of bytes, there is no practical way to assure
that the CPU12 stack will stay aligned. To assure that instructions take a fixed number of cycles regardless
of stack alignment, the internal RAM in M68HC12 MCUs is designed to allow single cycle 16-bit accesses
to misaligned addresses. As long as the stack is located in this special RAM, stacking and unstacking op-
erations take the same amount of execution time, regardless of stack alignment. If the stack is located in an
external 16-bit RAM, a PSHX instruction can take two or three cycles depending upon the alignment of the
stack. This extra access time is transparent to the CPU because the integration module freezes the CPU
clocks while it performs the extra 8-bit bus cycle required for a misaligned stack operation.

Table 2 Instructions With Smaller Object Code

Instruction Comments

DEY
INY

Page 2 opcodes in M68HC11 but page 1 in CPU12.

INST n,Y

For values of n less than 16 (the majority of cases). Were on page 2, now are on page 1.
Applies to BSET, BCLR, BRSET, BRCLR, NEG, COM, LSR, ROR, ASR, ASL, ROL, DEC,
INC, TST, JMP, CLR, SUB, CMP, SBC, SUBD, ADDD, AND, BIT, LDA, STA, EOR, ADC,
ORA, ADD, JSR, LDS, and STS. If X is the index reference and the offset is greater than
15 (much less frequent than offsets of 0, 1, and 2), the CPU12 instruction assembles to one
byte more of object code than the equivalent M68HC11 instruction.

PSHY
PULY

 Were on page 2, now are on page 1.

LDY
STY
CPY

 Were on page 2, now are on page 1.

CPY n,Y
LDY n,Y
STY n,Y

For values of n less than 16 (the majority of cases). Were on page 3, now are on page 1.

CPD Was on page 2, 3, or 4, now on page 1. In the case of indexed with offset greater than 15,
CPU12 and M68HC11 object code are the same size.

20 16 15 8 7 0 BIT POSITION

A B ACCUMULATORS A AND B
D ACCUMULATOR D (A : B)

IX INDEX REGISTER X

IY INDEX REGISTER Y

SP STACK POINTER

PC PROGRAM COUNTER

CCR CONDITION CODE REGISTER

MOTOROLA AN1284/D
4

4 TRUE 16-BIT ARCHITECTURE

The M68HC11 is a direct descendant of the M6800, one of the first microprocessors, which was introduced
in 1974. The M6800 was strictly an 8-bit machine, with 8-bit data buses and 8-bit instructions. As Motorola
devices evolved from the M6800 to the M68HC11, a number of 16-bit instructions were added, but the data
buses remained 8 bits wide, so these instructions were performed as sequences of 8-bit operations. The
CPU12 is a true 16-bit implementation, but it retains the ability to work with the mostly 8-bit M68HC11 in-
struction set. The larger ALU of the CPU12 (it can perform some 20-bit operations) is used to calculate 16-
bit pointers and to speed up math operations.

The CPU12 is a 16-bit processor with 16-bit data paths. Typical M68HC12 devices have internal and exter-
nal 16-bit data paths, but some derivatives incorporate operating modes that allow for an 8-bit data bus, so
that a system can be built with low-cost 8-bit program memory. M68HC12 MCUs include an on-chip inte-
gration module that manages the external bus interface. When the CPU makes a 16-bit access to a re-
source that is served by an 8-bit bus, the integration module performs two 8-bit accesses, freezes the CPU
clocks for part of the sequence, and assembles the data into a 16-bit word. As far as the CPU is concerned,
there is no difference between this access and a 16-bit access to an internal resource via the16-bit data
bus. This is similar to the way an MC68HC11 can stretch clock cycles to accommodate slow peripherals.

5 INSTRUCTION QUEUE

The CPU12 has a two-word instruction queue and a 16-bit holding buffer, which sometimes acts as a third
word for queueing program information. All program information is fetched from memory as aligned 16-bit
words, even though there is no requirement for instructions to begin or end on even word boundaries. There
is no penalty for misaligned instructions. If a program begins on an odd boundary (if the reset vector is an
odd address), program information is fetched to fill the instruction queue, beginning with the aligned word
at the next address below the misaligned reset vector. The instruction queue logic starts execution with the
opcode in the low order half of this word.

The instruction queue causes three bytes of program information (starting with the instruction opcode) to be
directly available to the CPU at the beginning of every instruction. As it executes, each instruction performs
enough additional program fetches to refill the space it took up in the queue. Alignment information is main-
tained by the logic in the instruction queue. The CPU provides signals that tell the queue logic when to ad-
vance a word of program information, and when to toggle the alignment status.

The CPU is not aware of instruction alignment. The queue logic includes a multiplexer that sorts out the
information in the queue to present the opcode and the next two bytes of information as CPU inputs. The
multiplexer determines whether the opcode is in the even or odd half of the word at the head of the queue.
Alignment status is also available to the ALU for address calculations. The execution sequence for all in-
structions is independent of the alignment of the instruction.

The only situation where alignment can affect the number of cycles an instruction takes occurs in devices
that have a narrow (8-bit) external data bus, and is related to optional program fetch cycles (O type cycles).
O cycles are always performed, but serve different purposes determined by instruction size and alignment.

Each instruction includes one program fetch cycle for every two bytes of object code. Instructions with an
odd number of bytes can use an O cycle to fetch an extra word of object code. If the queue is aligned at the
start of an instruction with an odd byte count, the last byte of object code shares a queue word with the op-
code of the next instruction. Since this word holds part of the next instruction, the queue cannot advance
after the odd byte executes, or the first byte of the next instruction would be lost. In this case, the O cycle
appears as a free cycle since the queue is not ready to accept the next word of program information. If this
same instruction had been misaligned, the queue would be ready to advance and the O cycle would be used
to perform a program word fetch.

AN1284/D MOTOROLA
5

In a single-chip system or in a system with the program in16-bit memory, both the free cycle and the pro-
gram fetch cycle take one bus cycle. In a system with the program in an external 8-bit memory, the O cycle
takes one bus cycle when it appears as a free cycle, but it takes two bus cycles when used to perform a
program fetch. In this case, the on-chip integration module freezes the CPU clocks long enough to perform
the cycle as two smaller accesses. The CPU handles only 16-bit data, and is not aware that the 16-bit pro-
gram access is split into two 8-bit accesses.

In order to allow development systems to track events in the CPU12 instruction queue, two status signals
(IPIPE[1:0]) provide information about data movement in the queue and about the start of instruction exe-
cution. A development system can use this information along with address and data information to external-
ly reconstruct the queue. This representation of the queue can also track both the data and address buses.

6 STACK FUNCTION

The CPU12 has a “last-used” stack rather than a “next-available” stack like the M68HC11 CPU. That is, the
stack pointer points to the last 16-bit stack address used, rather than to the address of the next available
stack location. This generally has very little effect, because it is very unusual to access stacked information
using absolute addressing.

The change does allow a 16-bit word of data to be removed from the stack without changing the value of
the SP twice. To illustrate, consider the operation of a PULX instruction. With the next-available M68HC11
stack, if the SP=$01F0 when execution begins, the sequence of operations is: SP=SP+1; load X from
$01F1:01F2; SP=SP+1; and the SP ends up at $01F2. With the last-used CPU12 stack, if the SP=$01F0
when execution begins, the sequence is: load X from $01F0:01F1; SP=SP+2; and the SP again ends up at
$01F2. The second sequence requires one less stack pointer adjustment.

The stack pointer change also affects operation of the TSX and TXS instructions. In the M68HC11, TSX
increments the SP by one during the transfer, so that the the X index points to the last stack location used.
The TXS instruction decrements the SP by one during the transfer for the same reason. CPU12 TSX and
TXS instructions are ordinary transfers — the CPU12 stack requires no adjustment.

For ordinary uses of the stack, such as pushes, pulls, and manipulations involving TSX and TXS, the
M68HC11 and CPU12 stacks appear identical. However, there is one very subtle difference.

The LDS #$xxxx instruction is normally used to initialize the stack pointer. In the M68HC11, the address
specified in the LDS instruction is the first stack location used. In the CPU12, the first stack location used is
one address lower than the address specified in the LDS instruction. Since the stack builds downward,
M68HC11 programs re-assembled for the CPU12 operate normally, but stacked values are located one
physical address lower in memory.

In very uncommon situations, such as test programs used to verify CPU operation, a program could initialize
the SP, stack data, and then read the stack via an extended mode read (it is normally improper to read stack
data from an absolute extended address). To make an M68HC11 source program that contains such a se-
quence work on the CPU12, the programmer must change either the initial LDS #$xxxx, or the absolute ex-
tended address used to read the stack.

7 IMPROVED INDEXING

The CPU12 has significantly improved indexed addressing capability, yet retains compatibility with the
M68HC11. The one cycle and one byte cost of doing Y-related indexing in the M68HC11 has been elimi-
nated. In addition, high level language requirements, including stack relative indexing and the ability to per-
form pointer arithmetic directly in the index registers, have been accommodated.

MOTOROLA AN1284/D
6

The M68HC11 has one variation of indexed addressing that works from X or Y as the reference pointer. For
X indexed addressing, an 8-bit unsigned offset in the instruction is added to the index pointer to arrive at
the address of the operand for the instruction. A load accumulator instruction assembles into two bytes of
object code, the opcode and a 1-byte offset. Using Y as the reference, the same instruction assembles into
three bytes (a page prebyte, the opcode, and a one-byte offset.) Analysis of M68HC11 source code indi-
cates that the offset is most frequently zero and very seldom greater than four.

The CPU12 indexed addressing scheme uses a postbyte plus 0, 1, or 2 extension bytes after the instruction
opcode. These bytes specify which index register is used, determine whether an accumulator is used as
the offset, implement automatic pre/post increment/decrement of indices, and allow a choice of 5-, 9-, or 16-
bit signed offsets. This approach eliminates the differences between X and Y register use and dramatically
enhances indexed addressing capabilities.

Major improvements that result from this new approach are:

• Stack pointer can be used as an index register in all indexed operations

• Program counter can be used as index register in all but auto inc/dec modes

• Accumulator offsets allowed using A, B, or D accumulators

• Automatic pre- or post-, increment or decrement (by –8 to +8)

• 5-bit, 9-bit, or 16-bit signed constant offsets

• 16-bit offset indexed-indirect and accumulator D offset indexed-indirect

The change completely eliminates pages three and four of the M68HC11 opcode map and eliminates al-
most all instructions from page two of the opcode map. For offsets of +0 to +15 from the X index register,
the object code is the same size as it was for the M68HC11. For offsets of +0 to +15 from the Y index reg-
ister, the object code is one byte smaller than it was for the M68HC11.

7.1 Constant Offset Indexing

The CPU12 offers three variations of constant offset indexing in order to optimize the efficiency of object
code generation.

The most common constant offset is zero. Offsets of 1, 2…4 are used fairly often, but with less frequency
than zero.

The 5-bit constant offset variation covers the most frequent indexing requirements by including the offset in
the postbyte. This reduces a load accumulator indexed instruction to two bytes of object code, and matches
the object code size of the smallest M68HC11 indexed instructions, which can only use X as the index reg-
ister. The CPU12 can use X, Y, SP, or PC as the index reference with no additional object code size cost.

The signed 9-bit constant offset indexing mode covers the same positive range as the M6HC11 8-bit un-
signed offset. The size was increased to nine bits with the sign bit (ninth bit) included in the postbyte, and
the remaining 8-bits of the offset in a single extension byte.

The 16-bit constant offset indexing mode allows indexed access to the entire normal 64-Kbyte address
space. Since the address consists of 16 bits, the 16-bit offset can be regarded as a signed (–32,768 to
+32767) or unsigned (0 to 65,535) value. In 16-bit constant offset mode, the offset is supplied in two exten-
sion bytes after the opcode and postbyte.

7.2 Auto-Increment Indexing

The CPU12 provides greatly enhanced auto increment and decrement modes of indexed addressing. In the
CPU12, the index modification may be specified for before the index is used (pre-), or after the index is used
(post-), and the index can be incremented or decremented by any amount from one to eight, independent
of the size of the operand that was accessed. X, Y, and SP can be used as the index reference, but this
mode does not allow PC to be the index reference (this would interfere with proper program execution).

AN1284/D MOTOROLA
7

This addressing mode can be used to implement a software stack structure, or to manipulate data structures
in lists or tables, rather than manipulating bytes or words of data. Anywhere an M68HC11 program has an
increment or decrement index register operation near an indexed mode instruction, the increment or decre-
ment operation can be combined with the indexed instruction with no cost in object code size, as shown in
the following code comparison.

The M68HC11 object code requires seven bytes, while the CPU12 requires only two bytes to accomplish
the same functions. Three bytes of M68HC11 code were due to the page prebyte for each Y related instruc-
tion ($18). CPU12 post increment indexing capability allowed the two INY instructions to be absorbed into
the LDAA indexed instruction. The replacement code is not identical to the original three instruction se-
quence because the Z condition code bit is affected by the M68HC11 INY instructions, while the Z bit in the
CPU12 would be determined by the value loaded into A.

7.3 Accumulator Offset Indexing

This indexed addressing variation allows use of either an 8-bit accumulator (A or B), or of the 16-bit D ac-
cumulator as an offset for indexed addressing. This supports program-generated offsets, which are more
difficult to achieve in the M68HC11. The following code compares M68HC11 and CPU12 operation.

The CPU12 object code is only one byte smaller, but the LDX # instruction is outside the loop. It is not nec-
essary to reload the base address in the index register on each pass through the loop because the LDAA
B,X instruction does not alter the index register. This reduces loop execution time from 15 cycles to 6 cycles.
This reduction, combined with the 8 MHz bus speed of the M68HC12 family, can have significant effects.

7.4 Indirect Indexing

The CPU12 allows some forms of indexed indirect addressing where the instruction points to a location in
memory where the address of the operand is stored. This is an extra level of indirection compared to ordi-
nary indexed addressing. The two forms of indexed indirect addressing are 16-bit constant offset indexed
indirect and D accumulator indexed indirect. The reference index register can be X, Y, SP, or PC as in other
CPU12 indexed addressing modes. PC-relative indirect addressing is one of the more common uses of in-
dexed indirect addressing. The indirect variations of indexed addressing help in the implementation of point-
ers. D accumulator indexed indirect addressing can be used to implement a runtime computed GOTO
function. Indirect addressing is also useful in high level language compilers. For instance, PC-relative indi-
rect indexing can be used to efficiently implement some C case statements.

HC11 HC12

18 A6 00
18 08
18 08

LDAA 0,Y
INY
INY

A6 71 LDAA 2,Y+

HC11 HC12

C6 05
CE 10 00
3A
A6 00

5A
26 F7

LDAB #$5[2]
LOOP LDX #$1000[3]

ABX [3]
LDAA 0,X[4]
|
DECB [2]
BNE LOOP[3]

C6 05
CE 10 00
A6 E5

04 31 FB

LDAB #$5[1]
LDX #$1000[2]

LOOP LDAA B,X[3]
|
DBNE B,LOOP[3]

MOTOROLA AN1284/D
8

8 IMPROVED PERFORMANCE

The CPU12 improves on M68HC11 performance in several ways. M68HC12 devices are designed using
sub-micron design rules, and fabricated using advanced semiconductor processing, the same methods
used to manufacture the M68HC16 and M68300 families of modular microcontrollers. M68HC12 devices
have a base bus speed of 8 MHz, and are designed to operate over a wide range of supply voltages. The
16-bit wide architecture also increases performance. Beyond these obvious improvements, the CPU12
uses a reduced number of cycles for many of its instructions, and a 20-bit ALU makes certain CPU12 math
operations much faster.

8.1 Reduced Cycle Counts

No M68HC11 instruction takes less than two cycles, but the CPU12 has more than 50 opcodes that take
only one cycle. Some of the reduction comes from the instruction queue, which assures that several pro-
gram bytes are available at the start of each instruction. Other cycle reductions occur because the CPU12
can fetch 16 bits of information at a time, rather than eight bits at a time.

8.2 Fast Math

The CPU12 has some of the fastest math ever designed into a Motorola general-purpose MCU. Much of
the speed is due to a 20-bit ALU that can perform two smaller operations simultaneously. The ALU can also
perform two operations in a single bus cycle in certain cases.

Table 3

 compares the speed of CPU12 and
M68HC11 math instructions. The CPU12 require much fewer cycles to perform an operation, and the cycle
time is half that of the M68HC11.

The IDIVS instruction is included specifically for C compilers, where word-sized operands are divided to pro-
duce a word-sized result (unlike the 32

÷

16=16 EDIV). The EMUL and EMULS instructions place the result
in registers so a C compiler can choose to use only 16 bits of the 32-bit result.

Table 3 Comparison of Math Instruction Speeds

Instruction
Mnemonic

Math
Operation

M68HC11
1 cycle = 250 ns

M68HC11
w/co-processor
1 cycle = 250 ns

CPU12
1 cycle = 125 ns

MUL
8

×

8 = 16
(signed)

10 cycles — 3 cycles

EMUL
16

×

16 = 32
(unsigned)

— 20 cycles 3 cycles

EMULS
16

×

16 = 32
(signed)

— 20 cycles 3 cycles

IDIV
16

÷

16 = 16
(unsigned)

41 cycles — 12 cycles

FDIV
16

÷

16 = 16
(fractional)

41 cycles — 12 cycles

EDIV
32

÷

16 = 16
(unsigned)

— 33 cycles 11 cycles

EDIVS
32

÷

16 = 16
(signed)

— 37 cycles 12 cycles

IDIVS
16

÷

16 = 16
(signed)

— — 12 cycles

EMACS
16

×

16

⇒

32
(signed MAC)

—
20 cycles

per iteration
12 cycles

per iteration

AN1284/D MOTOROLA
9

8.3 Code Size Reduction

CPU12 assembly language programs written from scratch tend to be 30% smaller than equivalent programs
written for the M68HC11. This figure has been independently qualified by Motorola programmers and an
independent C compiler vendor. The major contributors to the reduction appear to be improved indexed ad-
dressing and the universal transfer/exchange instruction.

In some specialized areas, the reduction is much greater. A fuzzy logic inference kernel requires about 250
bytes in the M68HC11, and the same program for the CPU12 requires about 50 bytes. The CPU12 fuzzy
logic instructions replace whole subroutines in the M68HC11 version. Table lookup instructions also greatly
reduce code space.

Other CPU12 code space reductions are more subtle. Memory to memory moves are one example. The
CPU12 move instruction requires almost as many bytes as an equivalent sequence of M68HC11 instruc-
tions, but the move operations themselves do not require the use of an accumulator. This means that the
accumulator often need not be saved and restored, which saves instructions.

Arithmetic on index pointers is another example. The M68HC11 usually requires that the content of the in-
dex register be moved into accumulator D, where calculations are performed, then back to the index register
before indexing can take place. In the CPU12, the LEAS, LEAX, and LEAY instructions perform arithmetic
operations directly on the index pointers. The pre-/post-increment/decrement variations of indexed address-
ing also allow index modification to be incorporated into an existing indexed instruction rather than perform-
ing the index modification as a separate operation.

Transfer and exchange operations often allow register contents to be temporarily saved in another register
rather than having to save the contents in memory. Some CPU12 instructions such as MIN and MAX com-
bine the actions of several M68HC11 instructions into a single operation.

9 ADDITIONAL FUNCTIONS

The CPU12 incorporates a number of new instructions that provide added functionality and code efficiency.
Among other capabilities, these new instructions allow efficient processing for fuzzy logic applications and
support subroutine processing in extended memory beyond the standard 64-Kbyte address map for
M68HC12 devices incorporating this feature. The following paragraphs discuss the most significant of these
enhancements. For detailed information, please refer to the

CPU12 Reference Manual,

 Motorola Publica-
tion Number CPU12RM/AD

9.1 Memory-to-Memory Moves

The CPU12 has both 8- and 16-bit variations of memory-to-memory move instructions. The source address
can be specified with immediate, extended, or indexed addressing modes. The destination address can be
specified by extended or indexed addressing mode. The indexed addressing mode for move instructions is
limited to modes that require no extension bytes (9- and 16-bit constant offsets are not allowed), and indirect
indexing is not allowed for moves. This leaves a 5-bit signed constant offset, accumulator offsets, and the
automatic increment/decrement modes. The following simple loop is a block move routine capable of mov-
ing up to 256 words of information from one memory area to another.

LOOP MOVW 2,X+ , 2,Y+ ;move a word and update pointers
DBNE B,LOOP ;repeat B times

The move immediate to extended is a convenient way to initialize a register without using an accumulator
or affecting condition codes.

MOTOROLA AN1284/D
10

9.2 Universal Transfer and Exchange

The M68HC11 has only six transfer instructions and two exchange instructions. The CPU12 has a universal
transfer/exchange instruction that can be used to transfer or exchange data between any two CPU regis-
ters. The operation is obvious when the two registers are the same size, but some of the other combinations
provide very useful results. For example when an 8-bit register is transferred to a 16-bit register, a sign-
extend operation is performed. Other combinations can be used to perform a zero-extend operation.

These instructions are used often in CPU12 assembly language programs. Transfers can be used to make
extra copies of data in another register, and exchanges can be used to temporarily save data during a call
to a routine that expects data in a specific register. This is sometimes faster and smaller (object code) than
saving data to memory with pushes or stores.

9.3 Loop Construct

The CPU12 instruction set includes a new family of six loop primitive instructions thatdecrement, increment,
or test a loop count in a CPU register and then branch based on a zero or non-zero test result. The CPU
registers that can be used for the loop count are A, B, D, X, Y, or SP. The branch range is a 9-bit signed
value (–512 to +511) which gives these instructions twice the range of a short branch instruction.

9.4 Long Branches

All of the branch instructions from the M68HC11 are also available with 16-bit offsets which allows them to
reach any location in the 64K address space.

9.5 Minimum and Maximum Instructions

Control programs often need to restrict data values within upper and lower limits. The CPU12 facilitates this
function with 8- and 16-bit versions of MIN and MAX instructions. Each of these instructions has a version
that stores the result in either the accumulator or in memory.

For example, in a fuzzy logic inference program, rule evaluation consists of a series of MIN and MAX oper-
ations. The min operation is used to determine the smallest rule input (the running result is held in an accu-
mulator), and the max operation is used to store the largest rule truth value (in an accumulator) or the
previous fuzzy output value (in a RAM location), to the fuzzy output in RAM. The following code demon-
strates how min and max instructions can be used to evaluate a rule with four inputs and two outputs.

LDY #OUT1 ;Point at first output
LDX #IN1 ;Point at first input value
LDAA #$FF ;start with largest 8-bit number in A
MINA 1,X+ ;A=MIN(A,IN1)
MINA 1,X+ ;A=MIN(A,IN2)
MINA 1,X+ ;A=MIN(A,IN3)
MINA 1,X+ ;A=MIN(A,IN4) so A holds smallest input
MAXM 1,Y+ ;OUT1=MAX(A,OUT1) and A is unchanged
MAXM 1,Y+ ;OUT1=MAX(A,OUT2) A still has min input

Before this sequence is executed, the fuzzy outputs must be cleared to zeros (not shown). M68HC11 min
or max operations are performed by executing a compare followed by a conditional branch around a load
or store operation.

These instructions can also be used to limit a data value prior to using it as an input to a table lookup or
other routine. Suppose a table is valid for input values between $20 and $7F. An arbitrary input value can
be tested against these limits and be replaced by the largest legal value if it is too big, or the smallest legal
value if too small using the following two CPU12 instructions.

AN1284/D MOTOROLA
11

HILIMIT FCB $7F ;comparison value needs to be in mem
LOWLIMIT FCB $20 ;so it can be referenced via indexed

MINA HILIMIT,PCR ;A=MIN(A,$7F)
MAXA LOWLIMIT,PCR ;A=MAX(A,$20)

;A now within the legal range $20 to $7F

The “,PCR” notation is also new for the CPU12. This notation indicates the programmer wants an appropri-
ate offset from the PC reference to the memory location (HILIMIT or LOWLIMIT in this example), and then
to assemble this instruction into a PC-relative indexed MIN or MAX instruction.

9.6 Fuzzy Logic Support

The CPU12 includes four instructions (MEM, REV, REVW, and WAV) specifically designed to support fuzzy
logic programs. These instructions have a very small impact on the size of the CPU, and even less impact
on the cost of a complete MCU. At the same time these instructions dramatically reduce the object code
size and execution time for a fuzzy logic inference program. A kernel written for M68HC11 required about
250 bytes and executed in about 750 milliseconds. The CPU12 kernel uses about 50 bytes and executes
in about 50 microseconds.

9.7 Table Lookup and Interpolation

The CPU12 instruction set includes two instructions (TBL and ETBL) for lookup and interpolation of com-
pressed tables. Consecutive table values are assumed to be the x coordinates the endpoints of a line seg-
ment. The TBL instruction uses 8-bit table entries (y-values) and returns an 8-bit result. The ETBL
instruction uses 16-bit table entries (y-values) and returns a 16-bit result.

An indexed addressing mode is used to identify the effective address of the data point at the beginning of
the line segment, and the data value for the end point of the line segment is the next consecutive memory
location (byte for TBL and word for ETBL). In both cases, the B accumulator represents the ratio of (the x-
distance from the beginning of the line segment to the lookup point) to (the x-distance from the beginning
of the line segment to the end of the line segment). B is treated as an 8-bit binary fraction with radix point
left of the MSB, so each line segment is effectively divided into 256 pieces. During execution of the TBL or
ETBL instruction, the difference between the end point y-value and the beginning point y-value (a signed
byte for TBL or a signed word for ETBL) is multiplied by the B accumulator to get an intermediate delta-y
term. The result is the y-value of the beginning point, plus this signed intermediate delta-y value.

9.8 Extended Bit Manipulation

The M68HC11 CPU only allows direct or indexed addressing. This typically causes the programmer to ded-
icate an index register to point at some memory area such as the on-chip registers. The CPU12 allows all
bit manipulation instructions to work with direct, extended or indexed addressing modes.

9.9 Push and Pull D and CCR

The CPU12 includes instructions to push and pull the D accumulator and the CCR. It is interesting to note
that the order in which 8-bit accumulators A and B are stacked for interrupts is the opposite of what would
be expected for the upper and lower bytes of the 16-bit D accumulator. The order used originated in the
M6800, an 8-bit microprocessor developed long before anyone thought 16-bit single-chip devices would be
made. The interrupt stacking order for accumulators A and B is retained for code compatibility.

9.10 Compare SP

This instruction was added to the CPU12 instruction set to improve orthogonality and high-level language
support. One of the most important requirements for C high level language support is the ability to do arith-
metic on the stack pointer for such things as allocating local variable space on the stack. The LEAS –5,SP
instruction is an example of how the compiler could easily allocate five bytes on the stack for local variables.
LDX 5,SP+ loads X with the value on the bottom of the stack and deallocates five bytes from the stack in a
single operation that takes only two bytes of object code.

MOTOROLA AN1284/D
12

9.11 Support for Memory Expansion

Bank switching is a common method of expanding memory, but there are some known difficulties associat-
ed with it. One problem is that interrupts cannot take place during the bank switching operation. This in-
creases worst case interrupt latency and requires extra programming space and execution time.

Some M68HC12 variants include a built-in bank switching scheme that expands the address space beyond
the standard 64 Kbytes, but eliminates many of the problems associated with external switching logic. The
CPU12 includes CALL and return from call (RTC) instructions that manage the interface to the bank-switch-
ing system. These instructions are analogous to the JSR and RTS instructions, except that the bank page
number is saved and restored automatically during execution. Since the page change operation is part of
an uninterruptable instruction, many of the difficulties associated with bank switching are eliminated. On
M68HC12 derivatives with expanded memory capability, bank numbers are specified by on-chip control reg-
isters. Since the addresses of these control registers may not be the same in all M68HC12 derivatives, the
CPU12 has a dedicated control line to the on-chip integration module that indicates when a memory-expan-
sion register is being read or written. This allows the CPU to access the PPAGE register without knowing
the register address.

The indexed indirect versions of the CALL instruction access the address of the called routine and the des-
tination page value indirectly. For other addressing mode variations of the CALL instruction, the destination
page value is provided as immediate data in the instruction object Code. CALL and RTC execute correctly
in the normal 64-Kbyte address space, thus providing for portable code.

10 INSTRUCTION SET REFERENCE

Table 4

is a quick reference to the CPU12 instruction set. The table shows source form, describes the op-
eration performed, lists the addressing modes used, gives machine encoding in hexadecimal form, and de-
scribes the effect of execution on the Condition Code bits.

Table 4 Instruction Set Summary

Source
Form Operation Addr.

Mode
Machine

Coding (hex)

~

1

S X H I N Z V C

ABA (A) + (B)

⇒

 A
Add Accumulators A and B

INH 18 06 2 – –

∆

–

∆ ∆ ∆ ∆

ABX (B) + (X)

⇒

 X

Translates to

 LEAX B,X
IDX 1A E5 2 – – – – – – – –

ABY (B) + (Y)

⇒

 Y

Translates to

 LEAY B,Y
IDX 19 ED 2 – – – – – – – –

ADCA

opr

(A) + (M) + C

⇒

 A
Add with Carry to A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

89 ii
99 dd
B9 hh ll
A9 xb
A9 xb ff
A9 xb ee ff
A9 xb
A9 xb ee ff

1
3
3
3
3
4
6
6

– –

∆

–

∆ ∆ ∆ ∆

ADCB

opr

(B) + (M) + C

⇒

 B
Add with Carry to B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C9 ii
D9 dd
F9 hh ll
E9 xb
E9 xb ff
E9 xb ee ff
E9 xb
E9 xb ee ff

1
3
3
3
3
4
6
6

– –

∆

–

∆ ∆ ∆ ∆

AN1284/D MOTOROLA
13

ADDA

opr

(A) + (M)

⇒

 A
Add without Carry to A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8B ii
9B dd
BB hh ll
AB xb
AB xb ff
AB xb ee ff
AB xb
AB xb ee ff

1
3
3
3
3
4
6
6

– –

∆

–

∆ ∆ ∆ ∆

ADDB

opr

(B) + (M)

⇒

 B
Add without Carry to B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CB ii
DB dd
FB hh ll
EB xb
EB xb ff
EB xb ee ff
EB xb
EB xb ee ff

1
3
3
3
3
4
6
6

– –

∆

–

∆ ∆ ∆ ∆

ADDD

opr

(A:B) + (M:M+1)

⇒

 A:B
Add 16-Bit to D (A:B)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C3 jj kk
D3 dd
F3 hh ll
E3 xb
E3 xb ff
E3 xb ee ff
E3 xb
E3 xb ee ff

2
3
3
3
3
4
6
6

– – – –

∆ ∆ ∆ ∆

ANDA

opr

(A)

•

 (M)

⇒

 A
Logical And A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

84 ii
94 dd
B4 hh ll
A4 xb
A4 xb ff
A4 xb ee ff
A4 xb
A4 xb ee ff

1
3
3
3
3
4
6
6

– – – –

∆ ∆

0 –

ANDB

opr

(B)

•

 (M)

⇒

 B
Logical And B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C4 ii
D4 dd
F4 hh ll
E4 xb
E4 xb ff
E4 xb ee ff
E4 xb
E4 xb ee ff

1
3
3
3
3
4
6
6

– – – –

∆ ∆

0 –

ANDCC

opr

(CCR)

•

 (M)

⇒

 CCR
Logical And CCR with Memory

IMM 10 ii 1

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

ASL

opr

ASLA
ASLB

Arithmetic Shift Left

Arithmetic Shift Left Accumulator A
Arithmetic Shift Left Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

4
3
4
5
6
6
1
1

– – – –

∆ ∆ ∆ ∆

ASLD

Arithmetic Shift Left Double

INH 59 1 – – – –

∆ ∆ ∆ ∆

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex)

~

1

S X H I N Z V C

C
0

b7 b0

C
0

b7 b0A Bb7b0

MOTOROLA AN1284/D
14

ASR opr

ASRA
ASRB

Arithmetic Shift Right

Arithmetic Shift Right Accumulator A
Arithmetic Shift Right Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

77 hh ll
67 xb
67 xb ff
67 xb ee ff
67 xb
67 xb ee ff
47
57

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

BCC rel Branch if Carry Clear (if C = 0) REL 24 rr 3/1 – – – – – – – –

BCLR opr, msk (M) • (mm) ⇒ M
Clear Bit(s) in Memory

DIR
EXT
IDX
IDX1
IDX2

4D dd mm
1D hh ll mm
0D xb mm
0D xb ff mm
0D xb ee ff mm

4
4
4
4
6

– – – – ∆ ∆ 0 –

BCS rel Branch if Carry Set (if C = 1) REL 25 rr 3/1 – – – – – – – –

BEQ rel Branch if Equal (if Z = 1) REL 27 rr 3/1 – – – – – – – –

BGE rel Branch if Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 2C rr 3/1 – – – – – – – –

BGND Place CPU in Background Mode
see Background Mode section.

INH 00 5 – – – – – – – –

BGT rel Branch if Greater Than
(if Z ✛ (N ⊕ V) = 0) (signed)

REL 2E rr 3/1 – – – – – – – –

BHI rel Branch if Higher
(if C ✛ Z = 0) (unsigned)

REL 22 rr 3/1 – – – – – – – –

BHS rel Branch if Higher or Same
(if C = 0) (unsigned)
same function as BCC

REL 24 rr 3/1 – – – – – – – –

BITA opr (A) • (M)
Logical And A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

85 ii
95 dd
B5 hh ll
A5 xb
A5 xb ff
A5 xb ee ff
A5 xb
A5 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

BITB opr (B) • (M)
Logical And B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C5 ii
D5 dd
F5 hh ll
E5 xb
E5 xb ff
E5 xb ee ff
E5 xb
E5 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

BLE rel Branch if Less Than or Equal
(if Z ✛ (N ⊕ V) = 1) (signed)

REL 2F rr 3/1 – – – – – – – –

BLO rel Branch if Lower
(if C = 1) (unsigned)
same function as BCS

REL 25 rr 3/1 – – – – – – – –

BLS rel Branch if Lower or Same
(if C ✛ Z = 1) (unsigned)

REL 23 rr 3/1 – – – – – – – –

BLT rel Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 2D rr 3/1 – – – – – – – –

BMI rel Branch if Minus (if N = 1) REL 2B rr 3/1 – – – – – – – –

BNE rel Branch if Not Equal (if Z = 0) REL 26 rr 3/1 – – – – – – – –

BPL rel Branch if Plus (if N = 0) REL 2A rr 3/1 – – – – – – – –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

Cb7 b0

AN1284/D MOTOROLA
15

BRA rel Branch Always (if 1 = 1) REL 20 rr 3 – – – – – – – –

BRCLR
opr, msk, rel

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Clear)

DIR
EXT
IDX
IDX1
IDX2

4F dd mm rr
1F hh ll mm rr
0F xb mm rr
0F xb ff mm rr
0F xb ee ff mm rr

4
5
4
6
8

– – – – – – – –

BRN rel Branch Never (if 1 = 0) REL 21 rr 1 – – – – – – – –

BRSET
opr, msk, rel

Branch if (M) • (mm) = 0
(if All Selected Bit(s) Set)

DIR
EXT
IDX
IDX1
IDX2

4E dd mm rr
1E hh ll mm rr
0E xb mm rr
0E xb ff mm rr
0E xb ee ff mm rr

4
5
4
6
8

– – – – – – – –

BSET opr, msk (M) ✛ (mm) ⇒ M
Set Bit(s) in Memory

DIR
EXT
IDX
IDX1
IDX2

4C dd mm
1C hh ll mm
0C xb mm
0C xb ff mm
0C xb ee ff mm

4
4
4
4
6

– – – – ∆ ∆ 0 –

BSR rel (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1)
Subroutine address ⇒ PC

Branch to Subroutine

REL 07 rr 4 – – – – – – – –

BVC rel Branch if Overflow Bit Clear (if V = 0) REL 28 rr 3/1 – – – – – – – –

BVS rel Branch if Overflow Bit Set (if V = 1) REL 29 rr 3/1 – – – – – – – –

CALL opr, page (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1)
(SP) – 1 ⇒ SP;
(PPG) ⇒ M(SP);
pg ⇒ PPAGE register;
Program address ⇒ PC

Call Subroutine in extended memory
(Program may be located on another
expansion memory page.)

EXT
IDX
IDX1
IDX2

4A hh ll pg
4B xb pg
4B xb ff pg
4B xb ee ff pg

8
8
8
9

– – – – – – – –

CALL [D,r]
CALL [opr,r]

Indirect modes get program address
and new pg value based on pointer.

r = X, Y, SP, or PC

[D,IDX]
[IDX2]

4B xb
4B xb ee ff

10
10

– – – – – – – –

CBA (A) – (B)
Compare 8-Bit Accumulators

INH 18 17 2 – – – – ∆ ∆ ∆ ∆

CLC 0 ⇒ C
Translates to ANDCC #$FE

IMM 10 FE 1 – – – – – – – 0

CLI 0 ⇒ I
Translates to ANDCC #$EF
(enables I-bit interrupts)

IMM 10 EF 1 – – – 0 – – – –

CLR opr

CLRA
CLRB

0 ⇒ M Clear Memory Location

0 ⇒ A Clear Accumulator A
0 ⇒ B Clear Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

79 hh ll
69 xb
69 xb ff
69 xb ee ff
69 xb
69 xb ee ff
87
C7

3
2
3
3
5
5
1
1

– – – – 0 1 0 0

CLV 0 ⇒ V
Translates to ANDCC #$FD

IMM 10 FD 1 – – – – – – 0 –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

MOTOROLA AN1284/D
16

CMPA opr (A) – (M)
Compare Accumulator A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

81 ii
91 dd
B1 hh ll
A1 xb
A1 xb ff
A1 xb ee ff
A1 xb
A1 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CMPB opr (B) – (M)
Compare Accumulator B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C1 ii
D1 dd
F1 hh ll
E1 xb
E1 xb ff
E1 xb ee ff
E1 xb
E1 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

COM opr

COMA
COMB

(M) ⇒ M equivalent to $FF – (M) ⇒ M
1’s Complement Memory Location

(A) ⇒ A Complement Accumulator A
(B) ⇒ B Complement Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

71 hh ll
61 xb
61 xb ff
61 xb ee ff
61 xb
61 xb ee ff
41
51

4
3
4
5
6
6
1
1

– – – – ∆ ∆ 0 1

CPD opr (A:B) – (M:M+1)
Compare D to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8C jj kk
9C dd
BC hh ll
AC xb
AC xb ff
AC xb ee ff
AC xb
AC xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CPS opr (SP) – (M:M+1)
Compare SP to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8F jj kk
9F dd
BF hh ll
AF xb
AF xb ff
AF xb ee ff
AF xb
AF xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CPX opr (X) – (M:M+1)
Compare X to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8E jj kk
9E dd
BE hh ll
AE xb
AE xb ff
AE xb ee ff
AE xb
AE xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

CPY opr (Y) – (M:M+1)
Compare Y to Memory (16-Bit)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8D jj kk
9D dd
BD hh ll
AD xb
AD xb ff
AD xb ee ff
AD xb
AD xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

AN1284/D MOTOROLA
17

DAA Adjust Sum to BCD
Decimal Adjust Accumulator A

INH 18 07 3 – – – – ∆ ∆ ? ∆

DBEQ cntr, rel (cntr) – 1⇒ cntr
if (cntr) = 0, then Branch
else Continue to next instruction

Decrement Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

DBNE cntr, rel (cntr) – 1 ⇒ cntr
If (cntr) not = 0, then Branch;
else Continue to next instruction

Decrement Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

DEC opr

DECA
DECB

(M) – $01 ⇒ M
Decrement Memory Location

(A) – $01 ⇒ A Decrement A
(B) – $01 ⇒ B Decrement B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

73 hh ll
63 xb
63 xb ff
63 xb ee ff
63 xb
63 xb ee ff
43
53

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ –

DES (SP) – $0001 ⇒ SP
Translates to LEAS –1,SP

IDX 1B 9F 2 – – – – – – – –

DEX (X) – $0001 ⇒ X
Decrement Index Register X

INH 09 1 – – – – – ∆ – –

DEY (Y) – $0001 ⇒ Y
Decrement Index Register Y

INH 03 1 – – – – – ∆ – –

EDIV (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 × 16 Bit ⇒ 16 Bit Divide (unsigned)

INH 11 11 – – – – ∆ ∆ ∆ ∆

EDIVS (Y:D) ÷ (X) ⇒ Y Remainder ⇒ D
32 × 16 Bit ⇒ 16 Bit Divide (signed)

INH 18 14 12 – – – – ∆ ∆ ∆ ∆

EMACS sum (M(X):M(X+1)) × (M(Y):M(Y+1)) + (M~M+3) ⇒
M~M+3

16 × 16 Bit ⇒ 32 Bit
Multiply and Accumulate (signed)

Special 18 12 hh ll 13 – – – – ∆ ∆ ∆ ∆

EMAXD opr MAX((D), (M:M+1)) ⇒ D
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1A xb
18 1A xb ff
18 1A xb ee ff
18 1A xb
18 1A xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

EMAXM opr MAX((D), (M:M+1)) ⇒ M:M+1
MAX of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1E xb
18 1E xb ff
18 1E xb ee ff
18 1E xb
18 1E xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

EMIND opr MIN((D), (M:M+1)) ⇒ D
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1B xb
18 1B xb ff
18 1B xb ee ff
18 1B xb
18 1B xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

MOTOROLA AN1284/D
18

EMINM opr MIN((D), (M:M+1)) ⇒ M:M+1
MIN of 2 Unsigned 16-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((D) – (M:M+1))

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1F xb
18 1F xb ff
18 1F xb ee ff
18 1F xb
18 1F xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

EMUL (D) × (Y) ⇒ Y:D
16 × 16 Bit Multiply (unsigned)

INH 13 3 – – – – ∆ ∆ – ∆

EMULS (D) × (Y) ⇒ Y:D
16 × 16 Bit Multiply (signed)

INH 18 13 3 – – – – ∆ ∆ – ∆

EORA opr (A) ⊕ (M) ⇒ A
Exclusive-OR A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

88 ii
98 dd
B8 hh ll
A8 xb
A8 xb ff
A8 xb ee ff
A8 xb
A8 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

EORB opr (B) ⊕ (M) ⇒ B
Exclusive-OR B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C8 ii
D8 dd
F8 hh ll
E8 xb
E8 xb ff
E8 xb ee ff
E8 xb
E8 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ETBL opr (M:M+1)+ [(B)×((M+2:M+3) – (M:M+1))] ⇒ D
16-Bit Table Lookup and Interpolate

Initialize B, and index before ETBL.
<ea> points at first table entry (M:M+1)
and B is fractional part of lookup value

(no indirect addr. modes allowed)

IDX 18 3F xb 10 – – – – ∆ ∆ – ?

EXG r1, r2 (r1) ⇔ (r2) (if r1 and r2 same size) or
$00:(r1) ⇒ r2 (if r1=8-bit; r2=16-bit) or
(r1low) ⇔ (r2) (if r1=16-bit; r2=8-bit)

r1 and r2 may be
A, B, CCR, D, X, Y, or SP

INH B7 eb 1 – – – – – – – –

FDIV (D) ÷ (X) ⇒ X; r ⇒ D
16 × 16 Bit Fractional Divide

INH 18 11 12 – – – – – ∆ ∆ ∆

IBEQ cntr, rel (cntr) + 1⇒ cntr
If (cntr) = 0, then Branch
else Continue to next instruction

Increment Counter and Branch if = 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

IBNE cntr, rel (cntr) + 1⇒ cntr
if (cntr) not = 0, then Branch;
else Continue to next instruction

Increment Counter and Branch if ≠ 0
(cntr = A, B, D, X, Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

IDIV (D) ÷ (X) ⇒ X; r ⇒ D
16 × 16 Bit Integer Divide (unsigned)

INH 18 10 12 – – – – – ∆ 0 ∆

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

AN1284/D MOTOROLA
19

IDIVS (D) ÷ (X) ⇒ X; r ⇒ D
16 × 16 Bit Integer Divide (signed)

INH 18 15 12 – – – – ∆ ∆ ∆ ∆

INC opr

INCA
INCB

(M) + $01 ⇒ M
Increment Memory Byte

(A) + $01 ⇒ A Increment Acc. A
(B) + $01 ⇒ B Increment Acc. B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

72 hh ll
62 xb
62 xb ff
62 xb ee ff
62 xb
62 xb ee ff
42
52

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ –

INS (SP) + $0001 ⇒ SP
Translates to LEAS 1,SP

IDX 1B 81 2 – – – – – – – –

INX (X) + $0001 ⇒ X
Increment Index Register X

INH 08 1 – – – – – ∆ – –

INY (Y) + $0001 ⇒ Y
Increment Index Register Y

INH 02 1 – – – – – ∆ – –

JMP opr Subroutine address ⇒ PC

Jump

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

06 hh ll
05 xb
05 xb ff
05 xb ee ff
05 xb
05 xb ee ff

3
3
3
4
6
6

– – – – – – – –

JSR opr (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
Subroutine address ⇒ PC

Jump to Subroutine

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

17 dd
16 hh ll
15 xb
15 xb ff
15 xb ee ff
15 xb
15 xb ee ff

4
4
4
4
5
7
7

– – – – – – – –

LBCC rel Long Branch if Carry Clear (if C = 0) REL 18 24 qq rr 4/3 – – – – – – – –

LBCS rel Long Branch if Carry Set (if C = 1) REL 18 25 qq rr 4/3 – – – – – – – –

LBEQ rel Long Branch if Equal (if Z = 1) REL 18 27 qq rr 4/3 – – – – – – – –

LBGE rel Long Branch Greater Than or Equal
(if N ⊕ V = 0) (signed)

REL 18 2C qq rr 4/3 – – – – – – – –

LBGT rel Long Branch if Greater Than
(if Z ✛ (N ⊕ V) = 0) (signed)

REL 18 2E qq rr 4/3 – – – – – – – –

LBHI rel Long Branch if Higher
(if C ✛ Z = 0) (unsigned)

REL 18 22 qq rr 4/3 – – – – – – – –

LBHS rel Long Branch if Higher or Same
(if C = 0) (unsigned)
same function as LBCC

REL 18 24 qq rr 4/3 – – – – – – – –

LBLE rel Long Branch if Less Than or Equal
(if Z ✛ (N ⊕ V) = 1) (signed)

REL 18 2F qq rr 4/3 – – – – – – – –

LBLO rel Long Branch if Lower
(if C = 1) (unsigned)
same function as LBCS

REL 18 25 qq rr 4/3 – – – – – – – –

LBLS rel Long Branch if Lower or Same
(if C ✛ Z = 1) (unsigned)

REL 18 23 qq rr 4/3 – – – – – – – –

LBLT rel Long Branch if Less Than
(if N ⊕ V = 1) (signed)

REL 18 2D qq rr 4/3 – – – – – – – –

LBMI rel Long Branch if Minus (if N = 1) REL 18 2B qq rr 4/3 – – – – – – – –

LBNE rel Long Branch if Not Equal (if Z = 0) REL 18 26 qq rr 4/3 – – – – – – – –

LBPL rel Long Branch if Plus (if N = 0) REL 18 2A qq rr 4/3 – – – – – – – –

LBRA rel Long Branch Always (if 1=1) REL 18 20 qq rr 4 – – – – – – – –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

MOTOROLA AN1284/D
20

LBRN rel Long Branch Never (if 1 = 0) REL 18 21 qq rr 3 – – – – – – – –

LBVC rel Long Branch if Overflow Bit Clear (if V=0) REL 18 28 qq rr 4/3 – – – – – – – –

LBVS rel Long Branch if Overflow Bit Set (if V = 1) REL 18 29 qq rr 4/3 – – – – – – – –

LDAA opr (M) ⇒ A
Load Accumulator A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

86 ii
96 dd
B6 hh ll
A6 xb
A6 xb ff
A6 xb ee ff
A6 xb
A6 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDAB opr (M) ⇒ B
Load Accumulator B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C6 ii
D6 dd
F6 hh ll
E6 xb
E6 xb ff
E6 xb ee ff
E6 xb
E6 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDD opr (M:M+1) ⇒ A:B
Load Double Accumulator D (A:B)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CC jj kk
DC dd
FC hh ll
EC xb
EC xb ff
EC xb ee ff
EC xb
EC xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDS opr (M:M+1) ⇒ SP
Load Stack Pointer

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CF jj kk
DF dd
FF hh ll
EF xb
EF xb ff
EF xb ee ff
EF xb
EF xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDX opr (M:M+1) ⇒ X
Load Index Register X

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CE jj kk
DE dd
FE hh ll
EE xb
EE xb ff
EE xb ee ff
EE xb
EE xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LDY opr (M:M+1) ⇒ Y
Load Index Register Y

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CD jj kk
DD dd
FD hh ll
ED xb
ED xb ff
ED xb ee ff
ED xb
ED xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

LEAS opr Effective Address ⇒ SP
Load Effective Address into SP

IDX
IDX1
IDX2

1B xb
1B xb ff
1B xb ee ff

2
2
2

– – – – – – – –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

AN1284/D MOTOROLA
21

LEAX opr Effective Address ⇒ X
Load Effective Address into X

IDX
IDX1
IDX2

1A xb
1A xb ff
1A xb ee ff

2
2
2

– – – – – – – –

LEAY opr Effective Address ⇒ Y
Load Effective Address into Y

IDX
IDX1
IDX2

19 xb
19 xb ff
19 xb ee ff

2
2
2

– – – – – – – –

LSL opr

LSLA
LSLB

Logical Shift Left
same function as ASL

Logical Shift Accumulator A to Left
Logical Shift Accumulator B to Left

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

78 hh ll
68 xb
68 xb ff
68 xb ee ff
68 xb
68 xb ee ff
48
58

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

LSLD

Logical Shift Left D Accumulator
same function as ASLD

INH 59 1 – – – – ∆ ∆ ∆ ∆

LSR opr

LSRA
LSRB

Logical Shift Right

Logical Shift Accumulator A to Right
Logical Shift Accumulator B to Right

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

74 hh ll
64 xb
64 xb ff
64 xb ee ff
64 xb
64 xb ee ff
44
54

4
3
4
5
6
6
1
1

– – – – 0 ∆ ∆ ∆

LSRD

Logical Shift Right D Accumulator

INH 49 1 – – – – 0 ∆ ∆ ∆

MAXA MAX((A), (M)) ⇒ A
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 18 xb
18 18 xb ff
18 18 xb ee ff
18 18 xb
18 18 xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

MAXM MAX((A), (M)) ⇒ M
MAX of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1C xb
18 1C xb ff
18 1C xb ee ff
18 1C xb
18 1C xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

MEM µ (grade) ⇒ M(Y);
(X) + 4 ⇒ X; (Y) + 1 ⇒ Y; A unchanged

if (A) < P1 or (A) > P2 then µ = 0, else
µ =MIN[((A) – P1)×S1, (P2 – (A))×S2, $FF]
where:
A = current crisp input value;
X points at 4 byte data structure that de-
scribes a trapezoidal membership function
(P1, P2, S1, S2);
Y points at fuzzy input (RAM location).
See instruction details for special cases.

Special 01 5 – – ? – ? ? ? ?

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

C
0

b7 b0

C
0

b7 b0A Bb7b0

C
0

b7 b0

C
0

b7 b0A Bb7b0

MOTOROLA AN1284/D
22

MINA MIN((A), (M)) ⇒ A
MIN of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 19 xb
18 19 xb ff
18 19 xb ee ff
18 19 xb
18 19 xb ee ff

4
4
5
7
7

– – – – ∆ ∆ ∆ ∆

MINM MIN((A), (M)) ⇒ M
MIN of 2 Unsigned 8-Bit Values

N, Z, V and C status bits reflect result of
internal compare ((A) – (M)).

IDX
IDX1
IDX2

[D,IDX]
[IDX2]

18 1D xb
18 1D xb ff
18 1D xb ee ff
18 1D xb
18 1D xb ee ff

4
5
6
7
7

– – – – ∆ ∆ ∆ ∆

MOVB opr1, opr2 (M1) ⇒ M2
Memory to Memory Byte-Move (8-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 0B ii hh ll
18 08 xb ii
18 0C hh ll hh ll
18 09 xb hh ll
18 0D xb hh ll
18 0A xb xb

4
4
6
5
5
5

– – – – – – – –

MOVW opr1, opr2 (M:M+11) ⇒ M:M+12
Memory to Memory Word-Move (16-Bit)

IMM-EXT
IMM-IDX
EXT-EXT
EXT-IDX
IDX-EXT
IDX-IDX

18 03 jj kk hh ll
18 00 xb jj kk
18 04 hh ll hh ll
18 01 xb hh ll
18 05 xb hh ll
18 02 xb xb

5
4
6
5
5
5

– – – – – – – –

MUL (A) × (B) ⇒ A:B

8 × 8 Unsigned Multiply

INH 12 3 – – – – – – – ∆

NEG opr

NEGA

NEGB

0 – (M) ⇒ M or (M) + 1 ⇒ M
2’s Complement Negate

0 – (A) ⇒ A equivalent to (A) + 1 ⇒ B
Negate Accumulator A
0 – (B) ⇒ B equivalent to (B) + 1 ⇒ B
Negate Accumulator B

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH

INH

70 hh ll
60 xb
60 xb ff
60 xb ee ff
60 xb
60 xb ee ff
40

50

4
3
4
5
6
6
1

1

– – – – ∆ ∆ ∆ ∆

NOP No Operation INH A7 1 – – – – – – – –

ORAA opr (A) ✛ (M) ⇒ A
Logical OR A with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

8A ii
9A dd
BA hh ll
AA xb
AA xb ff
AA xb ee ff
AA xb
AA xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ORAB opr (B) ✛ (M) ⇒ B
Logical OR B with Memory

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

CA ii
DA dd
FA hh ll
EA xb
EA xb ff
EA xb ee ff
EA xb
EA xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ 0 –

ORCC opr (CCR) ✛ M ⇒ CCR
Logical OR CCR with Memory

IMM 14 ii 1 ⇑ – ⇑ ⇑ ⇑ ⇑ ⇑ ⇑

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

AN1284/D MOTOROLA
23

PSHA (SP) – 1 ⇒ SP; (A) ⇒ M(SP)

Push Accumulator A onto Stack

INH 36 2 – – – – – – – –

PSHB (SP) – 1 ⇒ SP; (B) ⇒ M(SP)

Push Accumulator B onto Stack

INH 37 2 – – – – – – – –

PSHC (SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)

Push CCR onto Stack

INH 39 2 – – – – – – – –

PSHD (SP) – 2 ⇒ SP; (A:B) ⇒ M(SP):M(SP+1)

Push D Accumulator onto Stack

INH 3B 2 – – – – – – – –

PSHX (SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1)

Push Index Register X onto Stack

INH 34 2 – – – – – – – –

PSHY (SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1)

Push Index Register Y onto Stack

INH 35 2 – – – – – – – –

PULA (M(SP)) ⇒ A; (SP) + 1 ⇒ SP

Pull Accumulator A from Stack

INH 32 3 – – – – – – – –

PULB (M(SP)) ⇒ B; (SP) + 1 ⇒ SP

Pull Accumulator B from Stack

INH 33 3 – – – – – – – –

PULC (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP

Pull CCR from Stack

INH 38 3 ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

PULD (M(SP):M(SP+1)) ⇒ A:B; (SP) + 2 ⇒ SP

Pull D from Stack

INH 3A 3 – – – – – – – –

PULX (M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 2 ⇒ SP

Pull Index Register X from Stack

INH 30 3 – – – – – – – –

PULY (M(SP):M(SP+1)) ⇒ YH:YL; (SP) + 2 ⇒ SP

Pull Index Register Y from Stack

INH 31 3 – – – – – – – –

REV2 MIN-MAX rule evaluation
Find smallest rule input (MIN).
Store to rule outputs unless fuzzy output is
already larger (MAX).

For rule weights see REVW.

Each rule input is an 8-bit offset from the
base address in Y. Each rule output is an 8-
bit offset from the base address in Y. $FE
separates rule inputs from rule outputs. $FF
terminates the rule list.

REV may be interrupted.

Special 18 3A 3
per
rule
byte

– – – – – – ∆ –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

MOTOROLA AN1284/D
24

REVW2 MIN-MAX rule evaluation
Find smallest rule input (MIN),
Store to rule outputs unless fuzzy output is
already larger (MAX).

Rule weights supported, optional.

Each rule input is the 16-bit address of a
fuzzy input. Each rule output is the 16-bit ad-
dress of a fuzzy output. The value $FFFE
separates rule inputs from rule outputs.
$FFFF terminates the rule list.

REVW may be interrupted.

Special 18 3B 3
per
rule
byte;

5
per
wt.

– – ? – ? ? ∆ !

ROL opr

ROLA
ROLB

Rotate Memory Left through Carry

Rotate A Left through Carry
Rotate B Left through Carry

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

75 hh ll
65 xb
65 xb ff
65 xb ee ff
65 xb
65 xb ee ff
45
55

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

ROR opr

RORA
RORB

Rotate Memory Right through Carry

Rotate A Right through Carry
Rotate B Right through Carry

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

76 hh ll
66 xb
66 xb ff
66 xb ee ff
66 xb
66 xb ee ff
46
56

4
3
4
5
6
6
1
1

– – – – ∆ ∆ ∆ ∆

RTC (M(SP)) ⇒ PPAGE; (SP) + 1 ⇒ SP;
(M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP

Return from Call

INH 0A 6 – – – – – – – –

RTI (M(SP)) ⇒ CCR; (SP) + 1 ⇒ SP
(M(SP):M(SP+1)) ⇒ B:A; (SP) + 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ XH:XL; (SP) + 4 ⇒ SP
(M(SP):M(SP+1)) ⇒ PCH:PCL; (SP) – 2 ⇒ SP
(M(SP):M(SP+1)) ⇒ YH:YL;
(SP) + 4 ⇒ SP

Return from Interrupt

INH 0B 8 ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

RTS (M(SP):M(SP+1)) ⇒ PCH:PCL;
(SP) + 2 ⇒ SP

Return from Subroutine

INH 3D 5 – – – – – – – –

SBA (A) – (B) ⇒ A
Subtract B from A

INH 18 16 2 – – – – ∆ ∆ ∆ ∆

SBCA opr (A) – (M) – C ⇒ A
Subtract with Borrow from A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

82 ii
92 dd
B2 hh ll
A2 xb
A2 xb ff
A2 xb ee ff
A2 xb
A2 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

C b7 b0

Cb7 b0

AN1284/D MOTOROLA
25

SBCB opr (B) – (M) – C ⇒ B
Subtract with Borrow from B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C2 ii
D2 dd
F2 hh ll
E2 xb
E2 xb ff
E2 xb ee ff
E2 xb
E2 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SEC 1 ⇒ C
Translates to ORCC #$01

IMM 14 01 1 – – – – – – – 1

SEI 1 ⇒ I; (inhibit I interrupts)
Translates to ORCC #$10

IMM 14 10 1 – – – 1 – – – –

SEV 1 ⇒ V
Translates to ORCC #$02

IMM 14 02 1 – – – – – – 1 –

SEX r1, r2 $00:(r1) ⇒ r2 if r1, bit 7 is 0 or
$FF:(r1) ⇒ r2 if r1, bit 7 is 1

Sign Extend 8-bit r1 to 16-bit r2
r1 may be A, B, or CCR
r2 may be D, X, Y, or SP

Alternate mnemonic for TFR r1, r2

INH B7 eb 1 – – – – – – – –

STAA opr (A) ⇒ M
Store Accumulator A to Memory

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5A dd
7A hh ll
6A xb
6A xb ff
6A xb ee ff
6A xb
6A xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STAB opr (B) ⇒ M
Store Accumulator B to Memory

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5B dd
7B hh ll
6B xb
6B xb ff
6B xb ee ff
6B xb
6B xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STD opr (A) ⇒ M, (B) ⇒ M+1
Store Double Accumulator

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5C dd
7C hh ll
6C xb
6C xb ff
6C xb ee ff
6C xb
6C xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STOP2 (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);
STOP All Clocks

If S control bit = 1, the STOP instruction is
disabled and acts like a two-cycle NOP.

Registers stacked to allow quicker recovery
by interrupt.

INH 18 3E 9
+5
or
+2

– – – – – – – –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

MOTOROLA AN1284/D
26

STS opr (SPH:SPL) ⇒ M:M+1
Store Stack Pointer

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5F dd
7F hh ll
6F xb
6F xb ff
6F xb ee ff
6F xb
6F xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STX opr (XH:XL) ⇒ M:M+1
Store Index Register X

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5E dd
7E hh ll
6E xb
6E xb ff
6E xb ee ff
6E xb
6E xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

STY opr (YH:YL) ⇒ M:M+1
Store Index Register Y

DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

5D dd
7D hh ll
6D xb
6D xb ff
6D xb ee ff
6D xb
6D xb ee ff

2
3
2
3
3
5
5

– – – – ∆ ∆ 0 –

SUBA opr (A) – (M) ⇒ A
Subtract Memory from Accumulator A

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

80 ii
90 dd
B0 hh ll
A0 xb
A0 xb ff
A0 xb ee ff
A0 xb
A0 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SUBB opr (B) – (M) ⇒ B
Subtract Memory from Accumulator B

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

C0 ii
D0 dd
F0 hh ll
E0 xb
E0 xb ff
E0 xb ee ff
E0 xb
E0 xb ee ff

1
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SUBD opr (D) – (M:M+1) ⇒ D
Subtract Memory from D (A:B)

IMM
DIR
EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]

83 jj kk
93 dd
B3 hh ll
A3 xb
A3 xb ff
A3 xb ee ff
A3 xb
A3 xb ee ff

2
3
3
3
3
4
6
6

– – – – ∆ ∆ ∆ ∆

SWI (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (SWI Vector) ⇒ PC

Software Interrupt

INH 3F 9 – – – 1 – – – –

TAB (A) ⇒ B
Transfer A to B

INH 18 0E 2 – – – – ∆ ∆ 0 –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

AN1284/D MOTOROLA
27

TAP (A) ⇒ CCR
Translates to TFR A , CCR

INH B7 02 1 ∆ ⇓ ∆ ∆ ∆ ∆ ∆ ∆

TBA (B) ⇒ A
Transfer B to A

INH 18 0F 2 – – – – ∆ ∆ 0 –

TBEQ cntr, rel If (cntr) = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

TBL opr (M) + [(B) × ((M+1) – (M))] ⇒ A
8-Bit Table Lookup and Interpolate

Initialize B, and index before TBL.
<ea> points at first 8-bit table entry (M) and
B is fractional part of lookup value.

(no indirect addressing modes allowed.)

IDX 18 3D xb 8 – – – – ∆ ∆ – ?

TBNE cntr, rel If (cntr) not = 0, then Branch;
else Continue to next instruction

Test Counter and Branch if Not Zero
(cntr = A, B, D, X,Y, or SP)

REL
(9-bit)

04 lb rr 3 – – – – – – – –

TFR r1, r2 (r1) ⇒ r2 or
$00:(r1) ⇒ r2 or
(r1[7:0]) ⇒ r2

Transfer Register to Register
r1 and r2 may be A, B, CCR, D, X, Y, or SP

INH B7 eb 1 –
or
∆

–

⇓

–

∆

–

∆

–

∆

–

∆

–

∆

–

∆

TPA (CCR) ⇒ A
Translates to TFR CCR , A

INH B7 20 1 – – – – – – – –

TRAP (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP)
1 ⇒ I; (TRAP Vector) ⇒ PC

Unimplemented opcode trap

INH 18 tn
tn = $30–$39

or
$40–$FF

10 0 0 0 1 0 0 0 0

TST opr

TSTA
TSTB

(M) – 0
Test Memory for Zero or Minus

(A) – 0 Test A for Zero or Minus
(B) – 0 Test B for Zero or Minus

EXT
IDX
IDX1
IDX2

[D,IDX]
[IDX2]
INH
INH

F7 hh ll
E7 xb
E7 xb ff
E7 xb ee ff
E7 xb
E7 xb ee ff
97
D7

3
3
3
4
6
6
1
1

– – – – ∆ ∆ 0 0

TSX (SP) ⇒ X
Translates to TFR SP,X

INH B7 75 1 – – – – – – – –

TSY (SP) ⇒ Y
Translates to TFR SP,Y

INH B7 76 1 – – – – – – – –

TXS (X) ⇒ SP
Translates to TFR X,SP

INH B7 57 1 – – – – – – – –

TYS (Y) ⇒ SP
Translates to TFR Y,SP

INH B7 67 1 – – – – – – – –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not
convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola
product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. M is a
registered trademark of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

TO OBTAIN ADDITIONAL PRODUCT INFORMATION:
USA/EUROPE: Motorola Literature Distribution;

 P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,

6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609
INTERNET: http://www.mot.com

Notes:
1. Each cycle (~) is typically 125ns for an 8MHz bus (16MHz oscillator).
2. Refer to CPU12 Reference Manual for additional information.

WAI2 (SP) – 2 ⇒ SP;
RTNH:RTNL ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (YH:YL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (XH:XL) ⇒ M(SP):M(SP+1);
(SP) – 2 ⇒ SP; (B:A) ⇒ M(SP):M(SP+1);
(SP) – 1 ⇒ SP; (CCR) ⇒ M(SP);

WAIT for interrupt

INH 3E 8
(in)
+
5

(int)

–
or
–
or
–

–

–

1

–

–

–

–

1

1

–

–

–

–

–

–

–

–

–

–

–

–

WAV2

Calculate Sum of Products and Sum of
Weights for Weighted Average Calculation

Initialize B, X, and Y before WAV. B specifies
number of elements. X points at first element
in Si list. Y points at first element in Fi list.

All Si and Fi elements are 8-bits.

If interrupted, 6 extra bytes of stack used for
intermediate values

Special 18 3C 8
per

lable

– – ? – ? ∆ ? ?

wavr2

pseudo-
instruction

see WAV

Resume executing an interrupted WAV in-
struction (recover intermediate results from
stack rather than initializing them to 0)

Special 3C – – ? – ? ∆ ? ?

XGDX (D) ⇔ (X)
Translates to EXG D, X

INH B7 C5 1 – – – – – – – –

XGDY (D) ⇔ (Y)
Translates to EXG D, Y

INH B7 C6 1 – – – – – – – –

Table 4 Instruction Set Summary (Continued)

Source
Form Operation Addr.

Mode
Machine

Coding (hex) ~1 S X H I N Z V C

F i
i 1=

B

∑ X⇒

Si F i
i 1=

B

∑ Y:D⇒

	Transporting M68HC11 Code to M68HC12 Devices
	1 INTRODUCTION
	1.1 CPU12 Design Goals

	2 SOURCE CODE COMPATIBILITY
	Table 1 Translated M68HC11 Mnemonics
	Table 2 Instructions With Smaller Object Code

	3 PROGRAMMER’S MODEL AND STACKING
	Figure 1 CPU12 Programming Model

	4 TRUE 16-BIT ARCHITECTURE
	5 INSTRUCTION QUEUE
	6 STACK FUNCTION
	7 IMPROVED INDEXING
	7.1 Constant Offset Indexing
	7.2 Auto-Increment Indexing
	7.3 Accumulator Offset Indexing
	7.4 Indirect Indexing

	8 IMPROVED PERFORMANCE
	8.1 Reduced Cycle Counts
	8.2 Fast Math
	8.3 Code Size Reduction
	Table 3 Comparison of Math Instruction Speeds

	9 ADDITIONAL FUNCTIONS
	9.1 Memory-to-Memory Moves
	9.2 Universal Transfer and Exchange
	9.3 Loop Construct
	9.4 Long Branches
	9.5 Minimum and Maximum Instructions
	9.6 Fuzzy Logic Support
	9.7 Table Lookup and Interpolation
	9.8 Extended Bit Manipulation
	9.9 Push and Pull D and CCR
	9.10 Compare SP
	9.11 Support for Memory Expansion

	10 INSTRUCTION SET REFERENCE
	Table 4 Instruction Set Summary

